Enjoy the nice N4-SIMULATION found in the Web ... http://antiquark.com/sliderule/sim/n4es/virtual-n4es.html PICKETT & ECKEL INC., Chicago, ILL. / USA (1959) ******************************************************************* VERSION (B) S C A L E S of the » ALL METAL VECTOR LOG LOG « Model N4-ES =================================================================== Front Side [ inverse / RED ] Back Side =================================================================== 3rdRoot(X< 1;4;7 Digits,.. >) LL1 10^0.001X; 3rdRoot(X< 2;5;8 Digits,.. >) [LL-1] [ 1/10^0.001X ] 3rdRoot(X< 3;6;9 Digits,.. >) LL2 10^0.01X; [LL-2] [ 1/10^0.01X ] DF πX DF/M X/M ------------------------------------------------------------------- CF πX CF/M X/M [CIF] [1/πX] TH <0.1 .. 3> TanH(X) T1 tan(0.1X) SH1 <0.1 .. 0.88> SinH(0.1X) T2 tan(X) SH2 <0.88 .. 3> SinH(X) ST arc(0.01X) LN <0 .. 2.3> lnX S sin(0.1X); [cos(0.1X)] L <0 .. 1.0> lgX [CI] [1/X] [CI] [1/X] C X C X ------------------------------------------------------------------- D X D X [DI] [1/X] LL3 10^0.1X; [LL-3] [ 1/10^0.1X ] sqrt(X < ODD-No-Digits > ) LL4 10^X; sqrt(X < EVEN-No-Digits > ) [LL-4] [ 1/10^X ] There are 2 V E R S I O N S of the » N4-ES « in the collection: =================================================================== Both have the print "COPYRIGHT 1959" on the sliders, but d i f f e r e n t LOGOS, END-PIECES & CURSORS ... Version (A) Version (B) R E M A R K S : =================================================================== This model is made of aluminum. It came with a leather case, which can be clipped on the user's belt - typical for the USA: As seen in the "Western Movies" ready for a "quick draw". This slide rule has the typical "Pickett-Yellow" body: The "-ES" in the model number means "Eye-Saver"; Models with the "-T"-Extension (for "Traditional") have a white body. With 34 scales it was one of the most sophisticated slide rules! Using the "syncro" LOG-LOG-Scales: The LogLog scales are designed as a uniquely, split long scale. Because LL+/- are reciprocal, 2. & .5 (eg.) share the same tick. The DF/M-Scale is folded at 1/M where e = 2.71828 = EulerConst. M = lg(e) = 0.43429 and 1/M = ln(10) = 2.30259 IT FOLLOWS: Using the D-Scale X, the LL-Scales result in Power-of-10( X ) Using the DF/M-Scale X, the LL-Scales result in Power-of-e( X ) Using the LL-Scales X, the D-Scale result in lgX Using the LL-Scales X, the DF/M-Scale result in lnX Using the Hyperbolic Functions: Start with value on the SH scales ==>> reading SinH on C scale, start with value on the C scale ==>> reading ArcSinH on SH. Start with value on the TH scale ==>> reading TanH on C scale, start with value on the C scale ==>> reading ArcTanH on TH. There is no CosH(X) scale; make use of the definition: TanH(X) = SinH(X)/CosH(X) ==>> CosH(X) = SinH(X)/TanH(X) Example: CosH(0.345) = 1.060 --------------------------------- With C and D indices coinciding, set the indicator over X on the SH scale. Move slide until X on the TH scale is under the hairline. Read CosH(X) on the D scale under the C index. Historical Remarks ... impressum: ******************************************************************* © C.HAMANN http://public.BHT-Berlin.de/hamann 07/09/21 |