
Beuth Hochschule Feb 2014, p. 1

Table of content

Variables, Address Types and Reference Types in C++..1
1. Variables, unmodifiable variables and constants...1
2. Address types, address variables, address values and addresses..3
3. R-values and L-values..5
4. The variable operator * and the address operator &..6
5. Computations with addresses ..8
6. Reference types..12

Variables, Address Types and Reference Types in C++

by Ulrich Grude, Beuth University of Applied Sciences

Abstract: This is an attempt to explain the operators * and & and the terms address type and refer-
ence type as simple as possible (avoiding multiple words for the same thing), using buoys (from Algol-
68) as a graphical representation for variables.

There are various kinds of types in C++, among them address types (or: pointer types, e.g. int *,
string * and int * *) and reference types (e.g. int & and string &). Theses types and two
operations connecting them (* and &) shall be described here in detail, after some even more basic terms
(variable, unmodifiable variable, constant etc.) have been introduced.

In the paragraphs to come the following entities are assumed to be defined:
1 // Variables of various types:
2 int iv=171, iva=251, ivb=-31;
3 short sv=17, sva=25, svb=-3;
4 double dv=17.5, dva=25.5, dvb=-3.5;
5 bool bv=true, bva=false, bvb=true;
6 string tv="Hello ", tva="Sonja!", tvb="How are you?";
7
8 // Arrays of various types:
9 int ir[] = {111, 222, 333, 444, 555};

10 short sr[] = {11, 22, 33, 44, 55};
11 double dr[] = {11.1, 22.2, 33.3, 44.4, 55.5};
12 bool br[] = {false, true, true, false, true};
13 string tr[] = {"Hi ", "Sunny!", " How", " are", " you?"};

1. Variables, unmodifiable variables and constants

A variable consists essentially of two parts: an address and a value. Some variables have additionally a
name (or several names) or/and a target value.

Names of variables are chosen by the programmer. Addresses are chosen by the exer (the entity which
executes the program written by the programmer). In the following examples, the addresses chosen by a
fictitious but realistic exer are shown. These addresses are 4-digit hex numbers. Different exers may
choose different addresses.

Example-01: Variables and their parts

As buoys the variables defined above may look as follows:
1 Name Address Value
2 |iv |--<3000>--[171]
3 |sv |--<300c>--[17]
4 |dv |--<3018>--[17.5]
5 |bv |--<3030>--[true]
6 |tv |--<6014>--["Hello "]

The first buoy (in line 2) represents a variable with name |iv|, address <3000> and value [171].

p. 2, Feb 2014 1. Variables, unmodifiable variables and constants Beuth Hochschule

In a buoy, names will always be enclosed in bars |...|, addresses in angle brackets <...> and values
in square brackets [...]. Spaces after names are not significant.

The value of a variable, e.g. iv, can be changed with an assignment. This is not allowed if the variable is
defined with the type-specifier const. Here, such variables are called unmodifiable variables (saving
the term constant for another kind of things, see below).

Example-02: Unmodifiable variables of various types
7 int const uiv = 171;
8 short const usv = 17;
9 double const udv = 17.5;

10 bool const ubv = false;
11 string const utv = "Sonja!";

Instead of int const one can write const int too.

A constant consists of exactly two parts: A name and a value. Thus, a constant does not have an address.

The connection between the name of a constant and its value has to be established by the programmer
with a definition. Since programmers may make errors, the value of a constant may be erroneous and not
what the name suggests.

Note: Literals like e.g. 123, 0.5, 'A', "Hello" etc. are close relatives of constants, in that they too
are some kind of "names for values". The difference is: The connection between a literal and its value is
defined by (the language and) the exer. Therefore, in a certain sense, it can not be erroneous. The C/C++-
standard does not define the values of many literals (e.g. 'A', 'B', ..., 0.1f, 0.1 etc.) and different
exers use different values, but those differences do not count as errors. Fortunately, there are a few coun-
terexamples: The literals 10, 0xA, 0Xa and 012 seem to have the same value, i.e. ten, whatever exer
you use :-).

In C/C++ constants can be defined e.g. with the preprocesser command #define like that:
12 #define VAT_PERCENTAGE = 2.5

The value of this constant may be wrong.

Besides #define-constants there are other kinds of constants C/C++: Arrays and functions. The name
of an array is (technically speaking) the name of a constant, the value of which is an address.

Example-03: The array (or: address constant) ir (defined above) as a buoy
13 |ir |--[<4034>]
14 <4034>--[111]
15 <4038>--[222]
16 <403c>--[333]
17 <4040>--[444]
18 <4044>--[555]

In line 13, the angle brackets <...> specify, that 4034 is an address. The additional square brackets
[<...>] express, that the address is a value, i.e. the value of the address constant ir. Only in the buoy
of a constant is the name (e..g. ir) directly connected to the value (e.g. [<4034>]).

The value 4034 is the address of the 0th component ir[0] of the array ir. In the example this compo-
nent is a variable, consisting of the address <4034> and the value [111]. The next component hast the
address 4038 and the last component ir[4] starts at the address 4044.

That ir is an address constant has two consequences (which can be checked easily):

1. If you output ir to the screen (e.g. with cout << ir << endl;) an address-like number (e.g.
0x4034) will appear, not the number 111 stored at that address.

2. If you try to assign a value to ir (e.g. with ir=ir;) your exer will reject your program.

The name of a function also is (technically speaking) the name of an address constant.

Beuth Hochschule Variables, Address Types and Reference Types in C++ Feb 2014, p. 3

2. Address types, address variables, address values and addresses

AT-rule (basic version) : In C/C++ for (nearly) every type T there is an address type (or: pointer type)
T* (pronounced: "Address of a T variable" or shorter: "Address of T").

Here the * after the T is part of the type name, not an operator. You may insert as much whitespace be-
tween the T and the * as you like (0 spaces or 1 space are recommended).

Example-01: Address types

Type Address type pronounced
int inT* Address of int
double double * Address of double
string string * Address of string

The AT-rule may also be applied to address types (i.e. it may be applied recursively)

Example-02: Multi star address types

Type Address type pronounced
int * int * * Address of address of int
double * * double * * * Address of address of address of double
string * * * string * * * * Address of address of address of address of string

The AT-rule may not be applied to so-called reference types, which will be discussed below in chapter
6. For a reference type int & there is no address type int & *. Instead you probably want to use
the type int*.

Def.: An address variable is a variable of an address type (no surprises here :-).

Example-03: An address variable and its buoy
1 int* aiv = new int(171);

The following buoy represents, what the exer generates when executing the above definition:
2 |aiv |--<f284>--[<b3c>]--[171]

This buoy can be interpreted in two ways:

Interpretation 1: There are two "overlapping" variables:
a variable of type int* with name aiv, address <f284> and value [<b3c>] and
a variable of type int without a name and with address <b3c> and value [171].

bc3 is the "overlap": it is the value of the first variable and at the same time the reference of the second.
The second variable (of type int) is generated by the expression new int(171).

Interpretation 2: There is only one variable
with name aiv, reference <f284>, value [<b3c>] and target value [171].

Interpretation 1 is more fundamental and in some sense "cleaner", but a bit harder to describe and use.
Interpretation 2 introduces a new basic term (target value) in a sort of "ad hoc" manner, but in many
cases is easier to describe and use.

p. 4, Feb 2014 2. Address types, address variables, address values and addresses Beuth Hochschule

The following ASCII-diagram depicts both interpretations of the buoy:
3 Interpretation 1: Name1 Address1 Value1
4 | | Address2 Value2
5 ↓ ↓ ↓ ↓
6 Buoy: |aiv |--<f284>--[<b3c>]--[171]
7 ↑ ↑ ↑ ↑
8 | | | |
9 Interpretation 2: Name Address Value Target-value

End of Example-03.

In what follows, both interpretations will be used.

Remember: There are two kinds of float values: Those, which represent numbers, and those, which
don't. The latter are called NaN values or NaNs (NaN: Not a Number).

Similarly: At least one value, which may be assigned to an address variable, is not an address and we
will call this value NanA (Not an Address).

In an appropriate context this value is denoted by the literal 0, and a constant NULL with this value is de-
fined in the header file <cstddef>. Here we will assume that a constant NanA with this value has been
defined, like in the following example.

Example-04: Address variables with the address value NanA (alias NULL, alias 0)
10 #define NanA 0
11 #define NULL 0
12
13 int* aiva = NanA;
14 int* aivb = NULL;
15 int* aivc = 0;

Now each of the three variables has a a value which is not an address.

In buoys we will always use the NanA constant (and not 0 or NULL):
16 |aiva|--<ff00>--[NanA]
17 |aivb|--<ff04>--[NanA]
18 |aivc|--<ff08>--[NanA]

Example-05: Addresses of addresses of ... represented as buoys:

The following address variables
19 int* a1 = new int(171);
20 int** a2 = new int* (new int(172));
21 int*** a3 = new int** (new int* (new int(173)));

represented as buoys may look as follows:
22 |a1|--<1000>--[<A000>]--[171]
23 |a2|--<1004>--[<A004>]--[<B000>]--[172]
24 |a2|--<1008>--[<A008>]--[<B004>]--[<C000>]--[173]

Summary: An address type is a type with one or more stars * in its name (e.g. int*, short**,
string***). Variables and values of such a type are called address variables and address values, re-
spectively. An address value is either an address or equal to NanA.

Address types are often called pointer types.

Beuth Hochschule Variables, Address Types and Reference Types in C++ Feb 2014, p. 5

3. R-values and L-values

Remember: Expressions are syntactic entities (the programmer may write them into his program). Val-
ues are semantic entities (only the exer will compute and handle them during the execution of a
program). An expression is a command (given by the programmer to the exer) to compute a value.

A variable has at least two parts: An address and a value. Sometimes the address is called the L-value of
the variable, and the value is called the R-value of the variable.

Example-01: L-value and R-value as alternatives for address and value
1 Name Address Value
2 Name L-value R-Value
3 |iv |--<3000>---[171]
4 |iva |--<3200>---[251]
5 |ivb |--<3204>---[-31]

The terms L-value and R-value arose to describe assignment statements like e.g.
6 iva = ivb;

This statement can be translated into English as follows: "Write the value of ivb to the address of iva",
or, with the alternative pair of terms: "Write the L-value of ivb to the R-value of iva". Depending on
whether a variable is located on the left or on the right of the assignment operator, only its L-value or its
R-value is used by the exer.

In a source program, values are denoted by expressions. In this paper expressions, which denote L-values
(or R-values), are called L-expressions (or R-expressions, respectively). The name of a variable is an L-
expression, a literal is an R-expression. A constant like NanA is an R-expression.

In a certain sense an L-expression "is more" than an R-expression. An L-expression denotes directly an
address and indirectly the value stored at this address. Thus an L-expression denotes directly an L-ex-
pression and indirectly an R-expression. An R-expression, on the other hand, only denotes an R-value. In
other words: An L-expression denotes a variable (which consist of an L-expression and an R-
expression), whereas an R-expression "only" denotes a value (i.e. an R-value).

Note: An L-expression has to denote an address, and not a NanA value.

L-R-rule: At every location within a source program, where an R-value is expected, an L-value may be
used instead. In such a case the exer will automatically take the R-value of the L-value.

Example-02: An L-expression used instead of an R-expression
7 iva = ivb;

On the right side of the assignment operator, an R-value is expected. In line 7, the programmer has writ-
ten the name of a variable (ivb) there, which is an L-value. The exer will automatically take the value of
ivb which is an R-value.

In the following examples (of L- and R-expressions), L-expressions will always be written before and
R-expressions after an assignment operator, to emphasize "their left/right character".

Example-03: L-expressions

Every simple name of a variable is an L-expression:
8 iv=...; sv=...; dv=...; aiv=...;

Every (expression denoting a) component of an array of variables is an L-expression:
9 ir[0]=...; ir[1]=...; ir[iv]=...; ir[2*iv-3]=...; dr[ir[2*iv-3]]=...;

The ternary (or: three-place-) operator ...?...:... forms an L-expression, if
its second and third argument are L-expressions:
10 (0<iv && iv<=4 ? ir[iv] : ir[0]) = ...;

This command will assign some value either to the variable ir[iv] or to ir[0], depending on
whether the expression 0<iv && iv<=4 evaluates to true or false.

p. 6, Feb 2014 3. R-values and L-values Beuth Hochschule

Example-04: R-expressions

Every literal is an R-expression:
11 ...=17; ...=3.5; ...="Hello!";

Most operators form R-expressions:
12 ...=iv+1; ...=2*sv+321; ...=ir[0]+1; ...=5*ir[2*iv-3]-1;
13 ...=iv++; ...=++iv; ...=iv--; ...=--iv;

A first exception to this rule is shown in the previous example, line 10.

If f is a non-void function with a "normal" return type (e.g. int or double or string or string*
or int** etc.), then every call of f is an R-expression:
14 ...=sin(3.141); ...=sqrt(2.0*cos(3.5));

But on the other hand: Their are non-void functions with a so-called reference type as return type. Every
call of them is an L-expression. Reference types will be discussed in chapter 6.

The name of a constant is an R-expression:
15 #define VAT 22.5 // Another erroneous constant?

16 #define PI 3.141 // A pretty bad approximation for π.
17 ...=MWST; ...=PI;
18 ...=ir; ...=dr; // ir and dr are address constants!

End of Example-04.

Note: There are L-expressions, which are not allowed on the left side of an assignment, e.g.
the name of an unmodifiable variable. All names of variables are L-expressions, but in
19 int const uiv = 171;
20 uiv = 172;

line 20 is not allowed, because uiv is defined as const.

4. The variable operator * and the address operator &

As their names suggest, the variable operator * and the address operator & have to do with variables and
addresses.

The address operator & maps a variable to its address.
The variable operator * maps an address to its variable.

In other words:

The address operator & maps an L-value (a variable) to a specific kind of R-value (its address).
The variable operator * maps certain R-values (the address of a variable) to an L-value (its variable).

The following ASCII-diagram illustrates these explanations with buoys:
 Variable Operator Address
<abc>--[def] --- & --> <abc>
<abc>--[def] <-- * --- <abc>

Example-01: Applying the address operator & to variables

The expression &iv denotes the address of the variable iv.
The expression &ir[0] denotes the address of the variable ir[0].
The expression &dr[ir[2*iv-3]] denotes the address of the variable dr[ir[2*iv-3]].

"Normal expressions" denote "normal values" (e.g. int-values, double-values, string-values etc.).
Address expressions denote address values (i.e. addresses or the value NanA).

Beuth Hochschule Variables, Address Types and Reference Types in C++ Feb 2014, p. 7

Example-02: One normal expression and three address expressions
1 int iv = 171; // The literal 171 denotes a normal value
2 int* aiva = &iv;
3 int* aivb = new int(-31);
4 int* aivc = NanA; // NanA denotes an address value, but not an address

As buoys the four variables of this example may look as follows:
5 Name Address Value
6 |iv |--<5000>---[171]
7 ↑
8 |
9 |aiva|--<ef04>--[<5000>]

10 |aivb|--<ef00>--[< a68>]--[-31]
11 |aivc|--<eefc>--[<NanA>]

Here, the address expression &iv denotes the address <5000>,
the expression new int(-31) returns the address <a68>, (don't ask why a68!) and
the constant NanA denotes an address value, but not an address.

Here comes a (nearly) complete description of the variable operator *:

Let RE be an R-expression, which denotes (not the value NanA but) the address of a variable V.
Then *RE is an L-expression, denoting ("all parts of") the variable V.

Example-03: Applying the variable operator * to addresses

The address variable aiv (see previous example) has the value [<5000>].
The expression *aiv denotes the variable <5000>--[171] (which also has the name iv).

The expression *aivb denotes the variable <a68>--[-31] (which happens to have no name).

The address variable aivc has the value [<NanA>], which is not an address. Therefore
the expression *aivc does not denote a variable, but throws an exception.

The address expression &iv denotes the address <5000>.
The expression *&iv denotes the variable iv. So does the expression *&*&*&iv.

Example-04: Swapping values of variables using address types

Assume we have two variables
12 double d1 = 1.7;
13 double d2 = 2.5;

the buoys of which look like
14 |d1|--<A010>---[1.7]
15 [d2|--<A014>---[2.5]

By calling a void-function swap01 and passing it our variables as parameters, we want to swap the val-
ues of d1 and d2. One way to do that works as follows:

We equip the function swap01 with parameters of the address type double*:
16 void swap01(double* a1, double* a2) {
17 double tmp = *a1;
18 *a1 = *a2;
19 *a2 = tmp;
20 }

When calling this function, we have to pass it the addresses of our variables d1 and d2:
21 swap01(&d1, &d2);

During the execution of this call, the buoys of parameters a1 and a2 and the corresponding arguments
d1 and d2 may look as follows:

p. 8, Feb 2014 4. The variable operator * and the address operator & Beuth Hochschule

22 |d1|--<A010>---[1.7]
23 ↑
24 |a1|--<B000>--[<A010>]
25
26 |d2|--<A014>---[2.5]
27 ↑
28 |a2|--<B004>--[<A014>]

During the execution of the function, the L-expressions *a1 and *a2 denote the variable d1 and d2, re-
spectively, and the function can change their values.

Example-05: L-expressions and R-expressions are different, even if they have equal values.

The buyos of the variables
29 int n = 171;
30 int* a = &n;

may look as follows:
31 Name L-value R-value
32 |n |--<B000>---[171]
33 ↑
34 |a |--<C000>--[<B000>]

Now the following holds:

The L-expression n has the L-value <B000> (and the R-value [171])
The L-expression a has the R-value <B000> (and the L-value <C000>)
The R-expression &n has the R-value <B000>

On the right side of an assignment statement, the L-expression n is allowed, but the R-expression &n
is not allowed there, although both expressions have the same value <B000>.

Example-06: Addresses of addresses of ...
35 int v0 = 171;
36 int * v1 = &v0;
37 int * * v2 = &v1;
38 int * * * v3 = &v2;

As buoys these variables may look as follows:
39 |v0|--<4000>---[171]
40 ↑
41 |v1|--<5000>--[<4000>]
42 ↑
43 |v2|--<6000>--[<5000>]
44 ↑
45 |v3|--<7000>--[<6000>]

The variable v3 is of type address of address of address of int and in this example has the value
[<6000>]. Similar statements hold for v2, v1 and v0.

Remark: The term address operator for the operator & is widely used in the C/C++-literature. The term
variable operator for the operator * is not used in the literature. Instead, the terms dereferencing oper-
ator and indirection operator are common. But the common terms obfuscate the simple fact, that e.g.
v1* is a variable (and besides they sound rather intimidating).

5. Computations with addresses

In C/C++ it is possible, to program simple computations involving address values, e.g. an address and an
integral number may be added, or the addresses of two components of the same array may be subtracted
from each other.

Let AVA and AVB be two expressions of an address type T*, and let III be an expression of an integer
type (e.g. int, short, long, unsigned int, ... etc.). Then the following expressions are allowed
and have the indicated type:

Beuth Hochschule Variables, Address Types and Reference Types in C++ Feb 2014, p. 9

1 Expression Type
2 AVA + III T * // address plus number allowed
3 AVA - AVB ptrdiff_t // address minus address allowed
4 AVA - III T * // address minus number allowed
5 III + AVA T * // number plus address allowed

The following expressions are not allowed:
6 AVA + AVB // address plus address not allowed
7 III - AVA // number minus address not allowed

The type name ptrdiff_t is defined in the header file <cstddef> and denotes a signed integral
type (depending on the exer), e.g. the type int.

The operations multiplication, division and modulo are not allowed for address values.

Example-01: The types of expressions, which do computations with address values

The operator typeid may be applied to any expression. It returns an object of class type_info
(which is defined in the header file <typeinfo>). This object contains a function named name. An
expression like typeid(A).name() returns the name of the type of the expression A, like in the fol-
lowing examples:
8 typeid(adva).name(): double *
9 typeid(advb).name(): double *

10 typeid(adva+1234).name(): double *
11 typeid(adva-advb).name(): int // i.e. ptrdiff_t
12 typeid(adva-1234).name(): double *
13 typeid(1234+adva).name(): double *

Lines 8 and 9 show, that adva and advb are variables of type double*.

Note: The type names returned by typeid(A).name() are not standardized. The Gnu C++ compiler
gcc makes the function name return Pd (like "Pointer to double") instead of double * and i instead
of int etc.

Question: What is the value of (adr + 1) - adr (provided that it is allowed, i.e. if adr is the ad-
dress of an array component). This question is harder than it may appear at first sight, but do not run for
your calculator, it will not help :-).

The answer depends on the type of the variable which adr is addressing.

If T is a type, then size(T) will return the size of a variable of type T, measured in bytes. If V is a vari-
able, the size(V) similarly returns the the number of bytes occupied by V.
Many C/C++-exers use 4 bytes for each int-variable, thus size(int) will be 4 (some exers use dif-
ferent sizes). And if adr is an address of type T*, than adr + 1 will be larger than adr by size(T).

Example-02: An addition table for address values

The numbers in the following table depend on the exer, the mileage of your exer may differ:
14 typeid(aiv).name(): int *
15 typeid(asv).name(): short *
16 typeid(adv).name(): double *
17 typeid(abv).name(): bool *
18 typeid(atv).name(): string *
19
20 aiv: 1000, aiv+1: 1004, aiv+2: 1008, aiv+3: 100c
21 asv: 2000, asv+1: 2002, asv+2: 2004, asv+3: 2006
22 adv: 3000, adv+1: 3008, adv+2: 3010, adv+3: 3018
23 abv: 4000, abv+1: 4001, abv+2: 4002, abv+3: 4003
24 atv: 5000, atv+1: 5010, atv+2: 5020, atv+3: 5030

The lines 14 to 18 document the types of 5 address variables. In lines 20 to 24 you can see, how much
the values of those variables are increased by applying the operations +1, +2 and +3 to them. All num-
bers are hexadecimals.

p. 10, Feb 2014 5. Computations with addresses Beuth Hochschule

To be honest: It took some bribing to make the exer choose round values like 1000, 2000, ... for the
address variables :-).

To access the components of an array named dra, usually index variables and (L-) expressions like
dra[3], dra[i], etc. are used. If the keys for the square brackets [and] on your keyboard are
broken, you can use an address variable instead.

Example-03: How to access array components with an address variable
25 double dra[] = {1.11, 2.22, 3.33, 4.44, 5.55}; // An array and
26 int const LEN = sizeof(dra)/sizeof(dra[0]); // its length
27
28 for (double * a=dra; a<dra+LEN; a++) {
29 cout << "a: <" << hex << a << ">, *a: " << *a << endl;
30 }

Here an address variable a is used instead of the usual index variable i of type int, and dra[i] has
been replaced by *a (no need to buy a new keyboard). Note, that a++ will increase a (not by 1 but) by
sizeof(double), because a is of type double *.

As a buoy the array dra and its components may look as follows:
31 |dra |--[<eec8>]
32 <eec8>--[1.11]
33 <eed0>--[2.22]
34 <eed8>--[3.33]
35 <eee0>--[4.44]
36 <eee8>--[5.55]

And the the loop starting in line 28 will output the following lines:
a: eec8, *a: 1.11
a: eed0, *a: 2.22
a: eed8, *a: 3.33
a: eee0, *a: 4.44
a: eee8, *a: 5.55

Even if you do not plan to access array components with address variables yourself, you should be able
to read such accesses, in order to understand the code of other programmers (which may use broken key-
boards or take pride in typing as few characters as possible).

Note: The C-Standard (BS ISO/IEC 9899:1999, paragraph 6.5.2.1 Array sub-scripting) defines the
meaning of square brackets as follows:

"The definition of the subscript operator [] is that E1[E2] is identical to (*((E1)+(E2)))."

The C++-Standard (BS ISO/IEC 14882:2003, paragraph 5.2.1 Subscripting) contains a very similar defi-
nition. The upshot of those definitions: The four L-expressions r[i], i[r], *(r+i) and *(i+r)
have the same meaning (provided that r is an array and i an int-variable). If you want to demonstrate
bad taste, always use i[r] instead of r[i].

Independent from each other an address variable and the variable it addresses (its target variable) may
be modifiable or unmodifiable. Therefore, the following rule holds:

AT-rule (full version): In C/C++ for (nearly) every type T there are 4 address types (or: pointer types)

Address type pronounced:

T * (variable) address of T (variable)

T const * (variable) address of const T

T * const const address of T (variable)

T const * const const address of const T

Beuth Hochschule Variables, Address Types and Reference Types in C++ Feb 2014, p. 11

To pronounce the names of address types, just read them from right to left (like a normal Arabic or He-
brew text), reading a "*" as "address of" and "const" as "const". Add "variable" to your taste.

Example-05: (un)modifiable address variables and (un)modifiable target variables
37 // A quick way to declare 4 int variables:
38 int ir[4] = {17, 27, 37, 47};
39
40 // 4 address variables of
41 // different types:
42 // address var.: target var.:
43 int * ai01 = &ir[0]; // modifiable modifiable
44 int const * ai02 = &ir[2]; // modifiable unmodifiable
45 int * const ai03 = &ir[1]; // unmodifiable modifiable
46 int const * const ai04 = &ir[3]; // unmodifiable unmodifiable
47
48 *(ai01 ++); // modifiable address variable, allowed
49 (* ai01)++ ; // modifiable target variable, allowed
50 *(ai02 ++); // modifiable address variable, allowed
51 (* ai02)++ ; // unmodifiable target variable, not allowed
52 *(ai03 ++); // unmodifiable address variable, not allowed
53 (* ai03)++ ; // modifiable target variable, allowed
54 *(ai04 ++); // unmodifiable address variable, not allowed
55 (* ai04)++ ; // unmodifiable target variable, not allowed

Const-rule: The target of an address variable of type T const * ("address of const T") may be a mod-
ifiable (or an unmodifiable) variable.

At first sight that may sound like a contradiction. Take a second look after the following example:

Example-06: Address variables with and without a license to modify
56 float m = 1.2; // modifiable float variable
57 float const u = 3.4; // unmodifiable float variable
58
59 float const * amNL = &m; // address var. No license to modify
60 float const * auNL = &u; // address var. No license to modify
61
62 float * amWL = &m; // address var. With license to modify
63 // float * auWL = &u; // address var. With license to modify

The L-expressions *amNL and *amWL denote the same (modifiable) variable m. But the expression
*amNL (or rather: the programmer using it) does not have "a license to modify its target variable" (be-
cause of the "const" in line 59). The expression *amWL (or rather: the programmer using it) does have
such a license (because there is no "const" in line 62 revoking it). Of the following three statements
only one is "properly licensed":
64 *amNL = *amNL + 0.1; // not allowed
65 *auNL = *auNL + 0.1; // not allowed
66 *amWL = *amWL + 0.1; // allowed

Problem-01: Explain, why line 63 is erroneous (and therefore out-commented).

p. 12, Feb 2014 6. Reference types Beuth Hochschule

6. Reference types

RT-rule (basic version): In C/C++ for (nearly) every type T there is a reference type T &
(pronounced: reference to T).

Example-01: Reference types

Type Reference type pronounced

int int & reference to int

string string & reference to string

int * int * & reference to address of int

string * * string * * & reference to address of address of string

The ampersand & in e.g. int & is not an operator, but just a part of the type name
(similar to a star in a typename like e.g. int *).

Important fact: A reference type is not a type (i.e. it is neither a blueprint for the construction of vari-
ables nor does it consist of a set of values and a set of operations applicable to those values).

A so-called reference type may be used (similar to a real type) in variable declarations, as the type of
function parameters or as the return type of functions. But that is not enough to make it a real type. There
are no values and no variables of a reference type.

The least useful (but easiest to explain) use of a so-called reference type is, to give one or more names to
a variable (which may already have a name).

Example-02: How to declare a variable with three names
1 // Translation into English:
2 int n1 = 17; // Generate an int-variable named n1 with initial value 17
3 int & n2 = n1; // Let "n2" be another name for n1
4 int & n3 = n1; // Let "n3" be another name for n1

Lines 3 and 4 look deceptively like variable declarations. Do not be deceived. Those declarations do not
generate variables (least variables of the reference type int &), but require that the variable n1 already
has been generated. They only supply that variable with additional names. As a buoy the variable n1
(alias n2, alias n3) may look as follows:
5 |n1|-+-<A000>--[17]
6 ↑
7 |n2|-+
8 ↑
9 |n3|-+

For the exer it makes no difference, which of the names you use. After the following statements
10 n3 = n1 + 3;
11 n2 = n2 + 2;
12 n1 = n3 + 1;

the variable (singular!) has the value 23 (and 23 is not a value of the so-called reference type int &,
but a plain int-value).

The following example shows a more useful use of a reference type.

Beuth Hochschule Variables, Address Types and Reference Types in C++ Feb 2014, p. 13

Example-04: Swapping values of variables using reference types

Assume we have two variables
13 double d1 = 1.7;
14 double d2 = 2.5;

the buoys of which look like
15 |d1|--<A010>---[1.7]
16 [d2|--<A014>---[2.5]

By calling a void-function swap02 and passing it our variables as parameters, we want to swap the val-
ues of d1 and d2. A second way to do that works as follows (a first way has been shown above in Ex-
ample-04 of chapter 4):

We equip the function swap02 with parameters of the reference type double*:
17 void swap02(double& a1, double& a2) {
18 double tmp = a1;
19 a1 = a2;
20 a2 = tmp;
21 }

When calling this function, we only have to write the plain names of our variables as arguments (no fan-
cy address operator is needed or allowed):
22 swap02(d1, d2);

The reference type double& of the parameter a1 causes the address of d1 (instead of the the value of
d1) to be passed to the function (and similarly for the parameter/argument a2/d2).

During the execution of the call in line 22, the buoys of parameters a1 and a2 and the arguments d1 and
d2 may look as follows:
23 |d1|-+-<A010>---[1.7]
24 ↑
25 |a1|-+
26
27 |d2|-+-<A014>---[2.5]
28 ↑
29 |a2|-+

The variable d1 will have a1 as an additional name (and d1 will have the additional name a2), and
since a1 and a2 are well known inside the function swap02, the values of the variables can be
swapped.

Formally, the the first parameter in the definition of of swap02 is of the reference type double&. But
"in reality" that means:

1. The first argument in any call of swap02 has to be of type double (which is a real type, not a so-
called reference type)
2. This first argument has to be a variable (actually it may be any L-expression).
3. The function swap02 will supply that variable with an additional name and using that name can
change the value of the variable.

The same holds for der the second argument in each call of swap02.

Thus reference types enable the programmer, to pass a variable x to a function in order to have the value
of x modified. A non-void-function returns exactly 1 (in words: one) result. But if you write a (void- or
non-void) function with 10 parameters of (possibly different) reference types, (and call it with 10 of
"your" variables as arguments) the function can write 10 results into your variables.

Aside: Reference parameters are a very useful invention. But in C/C++ one detail has been criticized:
When only reading a call like the one in line 22 (swap02(d1, d2);), you can not see, whether the
values or the addresses of the arguments d1 and d2 will be passed to the function. In order to under-
stand the call, you must know at least the declaration of the function (you must know whether the param-

p. 14, Feb 2014 6. Reference types Beuth Hochschule

eters are of the real type double or of the "reference type" double&). The designers of the language
C# have found a simple way to avoid such criticism, by introducing two different calls:
swap02(d1, d2); // will pass the values of the arguments
swap02(ref d1, ref d2); // will pass the addresses of the arguments
Only types are called types in C#.

A second useful use of reference types is shown in the following example.

Example-05: A function with a reference type as its return type
30 double & dv(int index) {
31 static double default = 9.0;
32 static double dr[5] = {0.5, 1.5, 2.5, 3.5, 4.5};
33 static const int LEN = sizeof(dr)/sizeof(dr[0]);
34
35 if (0 <= index && index < LEN) {
36 return dr[index];
37 } else {
38 return default;
39 }
40 } // dv

This function guards an array dr (defined inside the function, but surviving any numbers of calls be-
cause it is static) against accesses with an out-of-bounds index. Whenever it is called, it will return a
variable (an L-value, not only an R-value), either one of the elements of the array dr (if the index is
OK) or the variable default. The caller can read and modify the value of the returned variable. Calls
of dv may look as follows:
41 double & d1 = dv(2);
42 double & d2 = dv(7);
43
44 cout << setprecision(2) << showpoint;
45 cout << "A d1: " << d1 << ", d2: " << d2 << endl;
46 d1 = d1 + 0.3;
47 d2 = d2 + 0.4;
48 cout << "B d1: " << d1 << ", d2: " << d2 << endl;

Theses commands will output the following lines (without the line numbers):
49 A d1: 2.5, d2: 9.0
50 B d1: 2.8, d2: 9.4

End of Example-05.

Like a normal name of an address variable, an alias-name may or may not have a license to modify its
target variable, as the following example shows.

Example-06: Alias names with and without a license to modify (see also Example-06 in chapter 5)
51 float m = 1.2; // modifiable float variable
52 float const u = 3.4; // unmodifiable float variable
53
54 float const & maNL = m; // alias for m, No license to modify
55 float const & uaNL = u; // alias for u, No license to modify
56
57 float & maWL = m; // alias for m, With license to modify
58 // float & uaWL = u; // alias for u, With license to modify

Of the following three statements only one is "properly licensed":
59 *amNL = *amNL + 0.1; // not allowed
60 *uaNL = *uaNL + 0.1; // not allowed
61 *amWL = *amWL + 0.1; // allowed

Problem-01: Explain, why line 58 is erroneous (and therefore out-commented).

Beuth Hochschule Variables, Address Types and Reference Types in C++ Feb 2014, p. 15

RT-rule (full version): In C/C++ for (nearly) every type T there are 2 reference types

Reference type pronounced

T & reference of T (variable)

T const & reference of const T

Often reference types are used to pass big objects by reference (instead of by value) to a function.

Example-07: Big string-objects are passed by reference to a function
62 void process(string const & str) {
63 // Prints the first and the last char of str:
64 cout << "str.at(0): " << str.at(0) << endl;
65 cout << "str.at(str.size()-1): " << str.at(str.size()-1) << endl;
66 // str.at(17) = 'A'; // Not allowed!
67 } // process
68
69 #define MILLION 1000*1000
70
71 string textA(2*MILLION, '?'); // A big string object
72 string textB(3*MILLION, 'X'); // A big string object
73
74 int main() {
75 process(textA);
76 process(textB);
77 ...
78 } // main

During the execution of the function call in line 75, the buoy of the argument textA and the parameter
str (of function process) may look as follows:
79 |textA|-+-<AC00>--["????? ... ?????"]
80 ↑
81 |str|-- +

Only a few machine instructions have to be executed to supply the variable textA with the additional
name str. The 2 million question marks in textA do not have to be copied. That is a big advantage of
pass by reference over pass by value. At the same time, textA can not be modified (inadvertently or
maliciously) by the function process. Thus, pass by reference is no less secure than pass by value.

If you want the function process to somehow modify the strings passed to it, just erase the word con-
st in line 62.

