Beuth Hochschule WS17/18, S. 1

Buoysfor Variablesin Java

Table of Contents

1. How to represent variabl@S @S DUOYS.........ooiiirie e et 2
1.1. Types, variables and VAIUES IN JAVAL........c.oouiiuiiiiiie et sttt e e e nee s 2
1.2, ASSIONMENT STAEEIMENTS......eiiiieiieiteeie ettt ettt e e e sse e te e e e s beesbeeaeesbeebeeneesbeenbesneesneeanreas 4
1.3. Different @qualS-MELNOUS...........coiiiiieee e e b et e nee s 5
1.4. The one and ONly €qUality OPEIaION.coeeiuiriiieere ettt esae e bessse e e nneeesneeas 6
1.5. Special rulesfor the tyPe SIINGveieeiiiese et e e teerae e e nnreeenee s 6
2. HOW tO represent arrayS aShUOYS.......ceeiieiirieieeie ettt sttt ae et eesseesbe s e e sbeenbesneesreeee e 7
2.1, Primitive O referenCe BlOMENTS........c.ooiiiieee et s a et sre e 7
2.2. Constructing an array in 3 StEPS OF 1N L SEEPD.....oiueeiiiiiiieieeee et e e sne e 9
PG T L= = I = Y TSR 9
2.4. Nested arrays and NEW-COMMEANGS...........cerrieeieerieeeeseesieseesreesseeeesseessesseesseessesseesseessessesssessnsessnseees 11
2.5. Sometimes nesting iSTor the DITAS..........ccuv e e 12
2.6. MUItIAIMENSIONGL @ITAYS......cveeueeereeieeieseeteeiesteesteseesteesteeseesseesesseesseenseaseesseessesseesseenseaseessennsesseesses 13
G N 1= o] o o] = o o PSSR 14
4. SOlUtIONSTOr the ProbIEmMS..........ooee e e 15
by Ulrich Grude

Beuth University of Applied Sciences

Abstract: Buoys are agraphical representation of variables. They were invented with the programming
language Algol 68, but can be used to represent the variables of any programming language. With this
notation some otherwise hard problems will become easy to teach and to understand. For Javathisin-
cludes the following: Of how many parts does a variable consist? What is the difference between avari-
able of aprimitive type and one of areference type? Since thevalue of ani nt -variableisani nt -num-
ber, why isit that thevalue of aSt r i ng-variableisnot aSt r i ng-object? What is the difference be-
tween the operation == and the methods equal s? What is the difference between an empty array and
anull reference? What is the difference between a nested array and a multidimensional array? etc.

Buoys lend themselves to illustrate notions like variable, value, reference, equality, identity etc. and to
test a deeper understanding of those notions with problems of the form:
"Draw the buoy(s) of the following variable(s): ...".

The term exer in this paper is meant to encompass everything which is used to execute a program (e.g.
compilers, interpreters, operating systems, various kinds of hardware etc.). The exer also may be a hu-
man being (e.g. the reader) who executes a program with a pencil and paper.

S. 2, WS17/18 1. How to represent variables as buoys Beuth Hochschule

1. How torepresent variables as buoys

The concept of a variable containing a value, which may be replaced by another value any number of
timesis arguably the most important and fundamental concept of most programming languages. Many
phenomena pertaining to the realm of programming can only be comprehended with a precise mental im-
age of how such amodifiable variable looks like. So-called buoys provide a graphical representation of
variables, which supports and facilitates such a precise image. Variables of al mainstream programming
languages can be represented by buoys. Buoys have been invented together with the programming lan-
guage Algol 68 (towards the end of the nineteen-sixties) and have been dlightly improved by students of
the Beuth University of Applied Sciences. This paper is specifically about the programming language
Java and its variables (and at the same time an introduction to buoys in general).

1.1. Types, variablesand valuesin Java
In Javait is useful to distinguish

Primitive types (eg.int,doubl e, bool ean, ...) and
Referencetypes (eg. String,List<String>String[],String[][]I[],-.)

Primitive variables (i.e. variables of aprimitive type) and
Referencevariables (i.e. variables of areference type),

Primitive values (i.e. values which may be assigned to a primitive variable) and
Referencevalues (i.e. values which may be assigned to areference variable).

Example-01: One primitive variable and two reference variables represented as buoys.

1int anna = 17; /1l aprimtive variable
2 StringBuilder bert = new StringBuilder("Hello!"); // a reference variable
3 StringBuilder carl = null; /1 a reference variable

As buoys these variables may look as follows:

The world of the programmer

Name: | ar}nal | bert | | carl | (syntax)
I 1 1
Reference: < 63> 78> <69)
The world of the exer
/ \| / \
Value: m (semantics)

Target-value:

Every variable consists of at least two parts: A reference and avalue. Every variable may (or may not)
have aname. In addition, reference variables may (or may not) have atar get-value. Thus primitive vari-
ables may consist of 2 or 3 parts and reference variables may consist of 2, 3 or 4 parts.

Only the name of avariable (if present) belongs to the world of the programmer. The other parts belong
to the world of the exer, because only he can generate and manipulate them, and the programmer will
never see them directly (at most he may see certain shadows of values or target-values, e.g. on a screen).

In abuoy 4 geometric shapes are used to represent the
(at most) 4 parts of avariable:
C> Hexagon, for references Names are placed int_o so-called canoes.
’ Values are enclosed in rectangles.
Refer ences are enclosed in hexagons.
[] Rectangle, for values The value of a reference variable is at the same time
areference and avalue. Thereforeit is represented by a
D Rectangle plus hexagon, for hexagon within arectangl
values which are references g gle.

Canoe, for names

Beuth Hochschule How to represent variables as buoys WS17/18, S. 3

There are 2 variants of primitive variables (with / without name) and 4 variants of reference variables
(with / without name, with / without target-value):

Primitive variables Reference variables
Name:
Reference: Q
Value: | | | | | | Knul) null
Target-value: | [] |

The specia reference-value nul | does not refer to atarget value. Every other reference-value does refer
to atarget value. In Java, every target valueis an object.

References are chosen (not by the programmer but) by the exer. He may choose them any way he likes,
but has to guarantee two things:

1. References of variables are unigue (i.e. different variables have different references).
2. The special value nul | isnever used as the reference of avariable
(it isused only as the value of reference variables).

In Java, there are no operations which operate on the references of variables. And there are only three
operations, which operate on reference values:

- the equality operation ==
- theinequality operation ! =
- the assignment operation =

The programmer can not apply any other operation to reference values (e.g. he can not do a computation
with them, convert themto ani nt -value or to a St r i ng-object or output them to the screen etc.).

Note: Even a program written in Jasmin (the assembler language for the Java Virtual Machine) can not
output reference values to the screen and can only apply the three operations ==, | =, = to them!

S. 4, WS17/18 1.2. Assignment statements Beuth Hochschule

1.2. Assignment statements

An assignment statement of theform x = y; aways copiesthe value of variabley into the value-box
of variable x (it never copies atarget-value!). This has radically different consequences depending on

whether x and y are primitive variables or reference variables.
Example-02: Assignments between primitive variables vs. between reference variables

1int p0l = 17; /1 primtive variable
2 int p02 = 25; /1 primtive variable
3 StringBuilder r01 = new StringBuilder("ABC'); // reference variable
4 StringBuilder r02 = new StringBuilder("DE"); [/ reference variable
5
6 p01 = p02; // Assignnent 1 (between primtive variables)
7 r01 =r02; /! Assignnent 2 (between reference vari abl es)
As buoys these 4 variables may ook (before and after the assignments) as follows:
Name: | po1 | | p(l)z | | f|01| ro2
I
Before Reference: < 16 » <12 > <43) <D
Assignment 1 and | | |
Assignment 2: Value: | 17 | | 25 | E 46 j m
Target-value: ["aBC" | ["DE" |
Name: Lpol | | pO2 | | _rO1 |

After
Assignment 1 and
Assignment 2:

Remember: Thereferences <16>, <12>, etc. and the reference values [<46>] , [<47>] have been

Reference: < 1:6 > < 1:2 > < 4:3)

Value:

Target-value:

[25 |

[25 |

K472

"ABC"

chosen by the exer following his particular taste. Do not question his taste.

After theassignment p0l =

After theassignment r 01 =

p02;

roz2;

you change this object, you change the target-value of r 01 and of r 02.

Problem-01: What is being output to the screen?

/1 Appends "XY" to the target-value of ro01
/1 Qutputs the target-value of r02

1 rO01. append(" XY");

2 Systemout.println(r02);

the variables p01 and p02 have equal values (viz. 25 and 25).
These values can be modified independently from each other (e.g. with additiona assignments).

thevariablesr 01 and r 02 aso have equal values (viz. [<47>]
and [<47>]). With these values they refer to (one and) the same object (not to two equal objects!). If

Beuth Hochschule How to represent variables as buoys WS17/18,S. 5

1.3. Different equals-methods

Every Java class contains an object method (a non-static method) with profile
public bool ean equal s(Ohj ect ob)

What thisequal s-method does (exactly when it will returnt r ue and when f al se) isdecided by the
programmer of the class in question, and therefore may vary widely from class to class.

Example-03: equal s-methods of classes St ri ng and St r i ngBui | der

1 String st01 new String("ABC");
2 String st 02 new String("ABC");
3 StringBuil der sb01 new StringBuil der (" ABC");
1 StringBuilder sb01l new StringBuil der (" ABC");

new-rule: Each time the new-command is called, it generates a new object and returns a reference,
which refers to (or: points to) this object. The reference will be different from all references existing so
far. It may be assigned to areference variable (of the appropriate type) asits new value.

From thisrule it follows, that the four variables st 01, st 02, sb01, sb02 are guaranteed to have four
different values (because new has been called four times).

As buoys the four variables may look as follows:

Name: | stO1 | | st02 | | sbO1 | | sb02 |

Reference: < 5:1 > < 5:2) @:@

Value: Kss5) K56 Ks7) Kobss
| | | I
Target-value: ["ABC" | ["ABC"| ['aBC"| ["ABC"|

Please note: The target-values of st 01 and st 02 are St r i ng-objects, whereas the target-values of
sb01 and sb02 are St r i ngBui | der -objects. The considerable differences between St r i ng-objects
and St r i ngBui | der -objects are not shown by the buoys (they have to be inferred from the context).

The programmer of class St r i ng has decided, that hisequal s-method compares target-values (i.e.
St r i ng-objects), not the values of St ri ng-variables. From this it follows that the expression

st 01. equal s(st02)
evauatestot r ue (since"” ABC' equals" ABC").

The programmer of class St ri ngBui | der has decided, that hisequal s-method compares values of
St ri ngBui | der -variables, not target-values. From thisit follows that the expression

sb01. equal s(sb02)
evauatestof al se (since[<57>] isnot equal [<58>]).
End of Example-03.

To check, if two St ri ngBui | der -variablesrefer to equal character sequences, you can convert their
target-values (of type St r i ngBui | der) to St r i ng-objects and then compare the St r i ng-objects,
e.g. likethat:

sb0l.toString().equal s(sb02.toString())
This expression evaluatesto t r ue (since™ ABC' equals™ ABC").

Recommended: Before you compare objects of aclass Cwith equal s, you should read the documenta-
tion of C. : equal s (i.e. of the object-method equal s of class C).

S. 6, WS17/18 1.4. The one and only equality operation Beuth Hochschule

1.4. Theoneand only equality operation

The equality operation ==, when applied to variables, aways compares their values (and never their
names, references or target-values).

Example-04: The operation ==
In this example, the variables defined in the previous example, are used.

Theexpressionst 01 == st 02 evaluatesto f al se (because[<55>] isnot equal [<56>])
Theexpressionsb01 == sb02 evaluatestof al se (because[<57>] isnot equal [<568>])

To learn, what the one (and only) equality operation == does, is much easier than to learn what the nu-
merous equal s-methods are actually doing.

Theinequality operation ! = works as follows: Whenever x ==y throwsan exception,x ! =y
throws the same exception. In al other cases, x ! = y returnsthevalue! (x == vy).

1.5. Special rulesfor thetype String

For each reference type thereisalitera nul | . St ri ng isthe only reference type, which has more than
thisnul | -literal: " ABC", " How are you?" and"" are examples of additional St r i ng-literals.

St r i ng-variables may therefore be initialized in two ways:

- with the new-command (like variables of other reference types)
-withaSt ri ng-literal (and without new)).

When anewcommand is used, the new-rule applies ("each call of the new-command returns a new ref-
erence’, see above).

StringLiteral-rule: All St ri ng-variablesinitialized with the same St r i ng-literal have equal values
(and with these values refer to one and the same St r i ng-object).

Example-05: St ri ng-variablesinitialized with aliteral only, with new or with another variable:

1 String st10 = "ABC';

2 String stl1ll1 = "ABC';

3 String st1l2 = new String("ABC");
4 String st13 = st12;

As buoys these variables may look as follows:

Name: | st10 | | st11 | | st12 | | st13 |
]

|
Reference: 61> 62

Value:

Target-value:

Following the StringL iteral-rule the variables st 10 and st 11 have equal values, because they areini-
tialized with the same St r i ng-literal " ABC" .

Following the new-rule the value of the variable st 12 isdifferent from the value of st 10.

Thevariablest 13 isinitialized with thevalue of st 12 (i.e. [<110>]). Thereforest 12 and st 13 re-
fer to the same " ABC" -object, but to adifferent " ABC" -object than st 10 and st 11.

Beuth Hochschule How to represent arrays as buoys WS17/18,S. 7

2. How torepresent arrays as buoys

The representation of variables by buoys can illustrate the structure of arrays and clarify (among other
things) the following differences:

- between arrays with primitive elements and arrays with reference el ements
- between nested arrays (native in Java) and multidimensional arrays (not native in Java)
- between an empty array and anul | reference

2.1. Primitiveor reference dements

Anarray of typei nt[] containsvariables (or: elements) of typei nt . Those elements are located com-
pletely inside the array. An array of type St r i ng contains St r i ng-variables, but the target-val ues of
those variables (the St r i ng-objects) are located outside of the array (not inside). Thus:

1. An "array of objects’ does not really contain objects, but only references referring to objects.

2. An object may belong to any number of arrays at the same time (whereas a primitive value like 17 or
t r ue may belong to at most one array, other arrays may only contain copies of it).

Example-01: Two arrays represented by buoys:

5 int[] ap = {10, 20, 30}; /1 An array with primtive elenments
6 String[] ar = {"AB", "C', "DEF"); /1 An array with reference el enents

As buoysthe variablesap and ar may look as follows:

ap ar
100 200
K110 K220
0 1 2 length 0 1 2 length
16 20 24 12 41 42 43 65
[20 |[20 |[30 || 3 K52 JK54 JKS56)| 3
[2e7] o] [oeF]

Elaborate and abbreviated buoys: Buoys of Java arrays come in two forms: elaborate (as shown here)
and abbreviated (if the gray parts are |eft out). Thus references of array elements are optional, as are all
three parts of the variable | engt h. Everything else is mandatory. The elaborate form is more realistic,
the abbreviated form more convenient. We will use the convenient form most of the time.

The array element ap[0] isaprimitive variable without a name (but we can refer to it with the expres-
sion ap[0]). Herethis variable has the reference <16> and the value [10] and all its parts are |ocated
within the array ap (which is represented by alargish black rectangle).

The array element ar [0] isareference variable without a name (but we can refer to it with the expres-
sionar [0]). Herethis variable has the reference <41>, thevalue [<52>] and the target-value
[" AB"] . Note, that the target-value is located outside the rectangle of the array ar .

Remember: All referenceslike<16>, <20>, ... etc. and al reference valueslike[<52>] ,[<54>], ...
etc. have been chosen by the exer following his particul ar taste.

The array object ar (the target-value of the variable ar) contains 3 elements and additionally ani nt -
variable named | engt h with value 3. In all arraysthis| engt h-variable is unmodifiable.

The buoy of ar should make it clear, that the array does not contain St r i ng-objects, but only refer-
ences that refer to such objects. Thusit is possible, that a St r i ng-object (which may be very large)
could belong to severa arrays at the same time, being represented in each of the arrays only by a (rela-
tively small) reference value.

S. 8, WS17/18 2.1. Primitive or reference e ements Beuth Hochschule

Example-02: Two arrays "containing” the same St r i ng-objects (buoys in abbreviated form):

ar ar2
{200 {300
o K52 3 K563 o

1 Kt g——{ ¢ |« €D
K 56) K523 »

"DEF"

Thearray ar "contains' 3 St r i ng-objects, sorted in ascending order ("AB", "C", "DEF").
Thearray ar 2 "contains' the same 3 St r i ng-objects, sorted in descending order ("DEF", "C", "AB").

In this example the three St r i ng-objects are rather small. But if each of them had a size of IMB, the
two arraysar and ar 2 together would not occupy 6 MB of memory, but only slightly more than 3 MB.

An array with elements of a reference type may contain nul | -elements. Such elements do not refer to
any target-value.

Example-03: An array with 2 nul | -elements and an empty-St r i ng-element

7 String[] ar3 = {"AB", null, "", "DE", null);
Asabuoy (in elaborate form) ar 3 may look as follows:
ar3
{250
K260)
0 1 7 3 4 length
44 45 46 47 48 66
K52 Y Knull) K 58) K 56) Knull } 5
] [oer]

A nul | -element (likee.g. ar 3[1] or ar 3[4]) isfundamentally different from an empty St r i ng-ob-
ject (likee.g. ar 3[2]). A nul | -element does not refer to atarget-value. But even an empty St ri ng-
object is afull-blown object, which contains more than 60 methods. Only the number of charactersit
containsis the smallest possible (i.e. 0).

Analogy: To have an empty cup of coffee is different from having no cup at all.

Beuth Hochschule How to represent arrays as buoys WS17/18, S. 9

2.2. Constructingan array in 3stepsor in 1 step

The following sequence of commands will first construct an array as01 in 3 steps, and then avery simi-
lar array as02 in asingle step. The 3-step-construction will be illustrated with 3 snapshots, i.e. buoys,
that show how as01 looks after each step.

1 String[] as0l1 = null; /'l step 1

2 as01 = new String[2]; /1 step 2

3 as01[0] = "AB"; /1l step 3, part 1
4 as01[1] = "C'; /1l step 3, part 2
5

6 String[] as02 = {"AB", "C'}; [/ Al in 1 step

The 3 snapshots (in abbreviated form) of as01 may look as follows:

as01 as01 as01
T — —
C null) K720 Knuil Y Knull } 710 H K720y K730}
1
1
(2]]
after step 1 after step 2 after step 3

After step 1. Thereisan array variable as01 (which may refer to an array), but no array yet.
After step 2: Now the array variable as01 refersto an array, but the array contains only null-elements.
After step 3: Now the array elementsrefer to St r i ng-objects

Problem-02: Draw as02 as buoy. Which parts are equal to those of as01 and which parts are guaran-
teed to be different?

2.3. Nested arrays

Nesting-Rule-1: For every type T thereisan array type T[] (pronounced: array of T).
T iscalled the element type of thetype T[] .

Thisrule appliesto al types, including array types: For the element type T[] thereisthe array type
T[][],fortheelementtype T[] [] thereisthearraytype T[] [][] etc.

In Java every array type (and every array) has a nesting depth. This depth isequal to
the number of pairs of square brackets|[] inthe type name.

Example-01: Some array types, the pronunciation of their names, nesting depth and element type

Array type pronounced nesting depth element type
int[] array of int 1 i nt

int[]1[] array of arrays of int 2 int[]
int[]1[]1[] array of arrays of arrays of int 3 int[]1[]
String[] array of String 1 String
String[][] array of arrays of String 2 String[]
String[][][] array of arrays of arrays of String 3 String[][]

Def.: A nested array isan array with nesting depth 2 or greater. Arrays with anesting depth of 1 are
sometimes called non-nested.

S. 10, WS17/18 2.3. Nested arrays Beuth Hochschule

Example-02: Nested arrays, and a buoy for one of them:

1 int[][] a2a = {{11, 12, 13}, {21, 22, 23}, {31, 32, 33}};
2 int[][] a2b = {{11, 12, 13}, {21, 22}, {31}, {}};

The array a2a has 3 elements of typei nt [] (and indirectly contains 9i nt -elements).
The array a2b has 4 elements of typei nt [] (and indirectly contains6i nt -elements).

As abuoy (in abbreviated form) the array a2b may look as follows:

0 1 2
2b) o Keo) (] [z (32]

240 0 1

e N &Y 21 | [22]
0

2 K64}

3E663

This example shows, that the elements of a nested array may be (arrays) of different lengths.

Remember: An array of objects does not really contain objects, but only references, which refer to ob-

jects. A nested array is an array of array-objects. It does not really contain array-objects as its elements,
but references, which refer to array-objects.

Problem-03: Draw abuoy (in abbreviated or in elaborate form, as you like) which represents the array
variable a2a of Example-02.

Besides "plain vanilla elements’ a nested array may contain el ements of more exciting flavors too .
Example-03: A nested array with empty elements and nul | -elements:

3 int[][] a2c = {null, {21, 22}, null, {}, {51, 52, 53}, {}};
As abuoy (in abbreviated form), the array variable a2c may look as follows:

0 1

a2 | |0 Koul) 2] [22]

/ \

K550 |, Ky
3 K73)

0 1 2

4 Ka Y [510]| 52 | | 53]
5|§752

Thearray a2c contains six elements, of which two are empty arrays (a2c[3] and a2c|[5]) and two
arenul | -elements (a2c[0] and a2c[2]).

Beuth Hochschule How to represent arrays as buoys WS17/18, S. 11

2.4. Nested arrays and new-commands
The following declarations

1 string[]1[]1[]1[1[]1 as5 = null;
2 int[J[1[1[]1[] ai5 = null;
tell the exer to create 2 variables. As buoys these variables may look like | as5| | a5 |

shown on the right. Although the declaration contains a generous amount of I I
square brackets, the buoys ook like any other reference variable. But they have <8?0> <9?0>
%Tﬁg:?(esrpeclal trait, which is not represented in the buoys, but is well known oy Koy

Thevalues of as5 and ai 5 seem to be equal, since they both are represented by nul | . But in redlity,
these nul | -values are of different types and thus incomparable (an expression likeas5 == ai 5
would be asyntax error). Thenul | -valueof as5 isof thetypeString[][]1[][]1[],whereasthe
nul | -valueof ai 5isof typeint[J[T[]1[11[].

The following newcommand:

0 1 2 :
& Yy Koy | 0 e Stringl3][JT1[IT]

generates an array of nesting depth 1, which as a buoy may
look like shown on the | eft, and returns a reference, which
refersto thisarray (herethisisthe reference <123>). Thisreferenceisof typeString[1[]1[1[11]
and thus may be assigned to the variable as5: asb5 = new String[3][]1[]1[1I1;

Thenewcommand. .. new int[3][][]1[][] ... generatesavery similar array and returns a
referencereferring to it. That referenceisof typeint []J[]1[]1[][] and therefor may be assigned to
aib: ai5=newint[3][][1[1[];

Problem-04: Of which type are the nul | -elementsin the array referred to by the reference <123>?

The following new-command

new int[3][2][] ... |(3§1)| K3§32)| |(3§33)|

generates an array with nesting depth 2 as

shown on the right, and returns a reference, ‘—’ '—|

which refersto thisarray (here: <234>). 0 1 0 1

! . . 0 1
Thisreferenceisof typei nt [][11] - Kooy Krnan Y| |Knary Koo | [Koary Knui

Thenul | -elementsin the element arrays
areall of typei nt[].

Problem-05: The following new-command will return areference R
referring to to anewly generated array A:
.onew int[2][5][3]1[]1[1[] ...

1. Of what typeis R?
2. What depth of nesting does A have?
3. At its bottom the array A will contain some nul | -values. Of which type are they?

S. 12, WS17/18 2.5. Sometimes nesting is for the birds Beuth Hochschule

2.5. Sometimes nesting isfor thebirds

For amathematician, it's an easy exercise to regard all objects as arrays. Using an old trick he would call
an object, which really is not an array, "an array of nesting depth 0". And he would proudly point out,
that with this funny way of speaking the following simple rule would make sense:

Nesting-rule-2: An array has nesting depth n, if all its elements have nesting depth n-1.
Self-evident as this rule may sound: In some cases it failsto work.

Example-01: An array with a dubious depth of nesting
1 String Vs "Hello!'"; /1 depth of nesting: O
2 String[] as {"A", "B"}; /1 depth of nesting: 1
3int[][] ai {{11, 12}, {21, 22}}; [// depth of nesting: 2
4

5 bject[] aol = {as, ai, vs}; /1 depth of nesting?

In this example, the array aol isthe culprit. It contains as its elements arrays of different depths of nest-
ing. Therefore, its own depth is not defined by Nesting-rule-2.

Even worse: An array of type Qbj ect [] may contain any

array as element, even itself. a02

Example-02: An array which containsitself as an element K200 0 1 2
1 bject[] ao2 = new Object[3]:; Coro | K10 Knul Y} Knull
2 ao2[0] = aoz; J

The Nesting-rule-2 does not define a nesting depth for the

array ao2.

Beuth Hochschule How to represent arrays as buoys WS17/18, S. 13

2.6. Multidimensional arrays

Apparently, many people are against discrimination, even against discrimination between nested arrays
and multidimensional arrays. Thisis unfortunate, because the difference between them isinteresting and
of practical relevance. Roughly speaking: Nested arrays are more powerful (they can solve more prob-
lems), but multidimensional arrays (if applicable) are more efficient (they need less memory and execu-
tion time).

There is no difference between non-nested arrays (with a nesting depth of 1) and 1-dimensional arrays.
But nested arrays (with a nesting depth of 2 or greater) and truly multidimensional arrays (with 2 or more
dimensions) are different creatures.

Arraysin Java are nested (or: arrays of arrays, not multidimensional)

(seep. 4 of https://docs.oracle.com/javase/specs/jls/se8/jIs8.pdf).

In Fortran and Pascal, there are only multidimensional arrays. In Ada, C++ and C#, both nested and
multidimensional arrays are native features.

The important differences between the two kinds of arrays:
A nested array contains (references to) arrays, which may be of different lengths.

A multidimensional array does not contain arrays, but elements of a non-array-type (likei nt , f | oat ,
String, ... etc.). To access an element, one needs to supply severa indices, one for each dimension,
eg.mar[3, 5] would accessthe element in the 3rd line and 5th column of a 2-dimensional array
mar .

A multidimensional array has afixed length for each of its dimensions. E.g. a 2-dimensional array may
consist of 10 lines of 15 rows each (al lines have to have the same length). A 5-dimensional array hasto
"resemble” the shape of a 5-dimensional cuboid.

A nested array is usually implemented as an array of references (which refer to arrays).

A multidimensional array is usualy implemented as a non-nested (or: 1-dimensional) array plus

some fancy index-fiddling.

People a IBM have extended Java by some commands for the generation and handling of multidimen-
siona arrays (see http://researcher.watson.ibm.com/researcher/files/us-bacon/Bacon98Jal A .pdf), but
these extensions require a special IBM-Java-compiler.

S. 14, WS17/18

3. A fina problem Beuth Hochschule

3. Afinal problem

Problem-06: Given are the following variable declarations
StringBuil der xxx = new StringBuilder("ABC");

String yyy
String 2727

new String("DEF");

and the following representations of those variables as (ASCII-) buoys:

Tar get - val ue

Nane Ref erence Val ue

| xxx| ---<300>----[<310>]---["ABC"]
| yyy| ---<400>----[<4

| zzz| - - -<500>----[..

10>] - - - [" DEF"]

Each of the following 8 statements contains the name of one of the variables (xxx, yyy or zzz).
Which part of the variable is meant by that name?

Y our answers should look similar to the following:

The target-value ["ABC'] or

The val ue [<410>] or

The reference <500> etc.
Nr | Statement What isthe meaning of xxx (or yyy or zzz respectively)?
1 Jif (xxx == ...) ...
2 if (yyy == ...) ...
3 if (yyy.equals(...)) ...
4 if (xxx.equals(...)) ...
5 xxx.append("Zzz");
6 XXX = ...
7 = XXX;
8 System out. print(xxx);

Beuth Hochschule Solutions for the Problems WS17/18, S. 15

4. Solutionsfor the Problems
Solution for Problem-01: What is being output to the screen?

1 rO01. append(" XY"); /1 Appends "XY" to the target-value of r01
2 Systemout.println(r02); // Qutputs the target-value of r02
Output: DEXY

Solution for Problem-02: Draw as02 as buoy. Which parts are equal to those of as01 and which parts
are guaranteed to differ?

as02 The reference <800> and value [<810>] of as02 are guaranteed
to be different from those of as01. (reference <700> and value
800 0 1 [<710>]).

K10t | K720 K730 Thevalues[<720>] and [<720>] of as02[0] and as02[1]
! are guaranteed to equal thevaluesof as01[0] andas01[1] .

[C2e7]]

Solution for Problem-03: Draw a buoy (in abbreviated or in elaborate form, as you like) which repre-
sents the array variable a2a of Example-02.

1 int[]1[] a2a = {{11, 12, 13}, {21, 22, 23}, {31, 32, 33}};
The array variable a2ain abbreviated form:

aza 5 1
>
500y [0 KT [0][22][13]
K540)
0 1 2
1 K72 21 |[22 |[23 |
0 1 2
2 N4 [31 | [32 | [33]

Solution for Problem-04: Of which type arethe nul | -elements in the array referred to by
the reference <123>?

They areof typeint[][][]11[].

Solution for Problem-05: The following new-command will return areference R
referring to to anewly generated array A:
.new int[2][5][3][1[1[] ...

1. Of what typeis R? Oftypeint[1[]1[1111]
2. What depth of nesting does A have? A hasnesting depth 3

3. At its bottom the array A will contain some nul | -values.
Of which type are they? They areof typeint[][]

S. 16, WS17/18 4. Solutions for the Problems Beuth Hochschule

Solution for Problem-06: Given are the following variable declarations
StringBuil der xxx new StringBuil der("ABC');

String yyy = new String("DEF");

String zzz = ... ;

and the following representations of those variables as (ASCII-) buoys:
Nane Ref erence Val ue Tar get - val ue

| xxx]| - --<300>----[<310>]---["ABC']

| yyy| - - - <400>- - - - [<410>] - - - [" DEF"]

| zzz]| ---<500>----[...

Each of the following 8 statements contains the name of one of the variables (xxx, yyy or zzz).
Which part of the variable is meant by that name?

Y our answers should look similar to the following:
The target-value ["ABC'] or

The val ue [<410>] or

The reference <500> etc.

Nr Statement What isthe meaning of xxx (or yyy or zzz respectively)?
1 0if (xxx == ...) ... ; Thevaue[<310>]
2 0if (yyy == ...) ... : Thevaue[<410>]
3 if (yyy.equals(...)) ... ; Thetarget-value (or: the object) [" DEF"]
4 if (xxx.equals(...)) ... ; Thevaue[<310>]
5 | xxx.append("ZzZ"); The target-value (or: the object) [" ABC"]
6 xxx = ... ; The reference <300> (not the"old value" [<310>] 1)
7 L= XXX Thevalue[<310>]
8 Systemout.print(zzz); Thevalue (if it equals nul 1) or the target-val ue (otherwise)

