previous <<==>> next

ARISTO - HYPERLOG   ( 25 cm Scales )



ARISTO-Werke Dennert & Pape, Hamburg / Germany               (1973)
*******************************************************************

S C A L E S   of  the    ARISTO   » HYPERLOG «           Model 0972
===================================================================
Front Side               [ inverse / RED ]                Back Side
===================================================================

[LL00]   [exp(-0.001X)]    H2  <1.4 .. 10>    sqrt(1 + X2)
[LL01]   [exp(-0.01X)]     Sh2 <0.85 .. 3>    SinH(X)
[LL02]   [exp(-0.1X)]      Th  <0.1 .. 3>     TanH(0.1X)
[LL03]   [exp(-X)]         K                  X3
DF       πX                A                  X2
-------------------------------------------------------------------
CF       πX                B                  X2
[CIF]    [1/πX]            T                  tan(0.1X);[cot(0.1X)]
L        lgX               ST                 arc(0.01X)
                           S                  sin(0.1X);[cos(0.1X)]
[CI]     [1/X]             [P]                [sqrt(1 - (0.1X)2)]
C        X                 C                  X
-------------------------------------------------------------------
D        X                 D                  X
LL3      exp(X)            [DI]               [1/X]
LL2      exp(0.1X)         Ch  <0 .. 3>       CosH(X)
LL1      exp(0.01X)        Sh1 <0.1 .. 0.9>   SinH(0.1X)
LL0      exp(0.001X)       H1  <1.005 .. 1.5> sqrt(1 + X2)       

R E M A R K S :
===================================================================
Production Code = 2LS2 = Hamburg, 1973, Lot 2

The DEFINITIVE FORMS for the HYPERBOLIC FUNCTIONS are:

CosH(X) = ( exp(+X) + exp(-X) ) / 2   <==  this is the "Chain Line"
SinH(X) = ( exp(+X) - exp(-X) ) / 2       ( eg. suspension bridge )
TanH(X) =  SinH(X)  / CosH(X)
 exp(X) =  SinH(X)  + CosH(X)
      1 =  CosH2(X) - SinH2(X)

CosH(X) =  SinH(X) / TanH(X)  =  sqrt( 1 + SinH2(X) )  =  H(X)

Using the Hyperbolic Functions:
Start with value on the Sh scales ==>> reading SinH on D scale,
  start with value on the D scale ==>> reading ArcSinH on Sh.
Start with value on the Th scale  ==>> reading TanH on D scale,
  start with value on the D scale ==>> reading ArcTanH on Th.

This "Flag Ship" from ARISTO came on the market at the end of era
and with 33 scales it was one of the most sophisticated ever made.

The slide rules is shielded in a hard-cover case.  A »1364« Ruler
with Conversion-Tables, Log-Scales and ( NZ = "Norm Zahlen" = )
"Standard Number Sequences" and two Stands (to clip on the
slide rule for comfortable reading!) belongs to the set together
with an instruction booklet.

                    Historical Remarks ...
impressum:
*******************************************************************
© C.HAMANN    http://public.beuth-hochschule.de/~hamann    12/24/06