ARISTO-Werke Dennert & Pape, Hamburg / Germany (1958) ******************************************************************* S C A L E S of the ARISTO » HYPERBOLOG « Model 0971 =================================================================== Front Side [ inverse / RED ] Back Side =================================================================== [LL01] [exp(-0.01X)] [LL02] [exp(-0.1X)] Th <0.1 .. 3> TanH(0.1X) [LL03] [exp(-X)] K X3 DF πX A X2 ------------------------------------------------------------------- CF πX B X2 [CIF] [1/πX] T tan(0.1X);[cot(0.1X)] L lgX ST arc(0.01X) [CI] [1/X] S sin(0.1X);[cos(0.1X)] C X C X ------------------------------------------------------------------- D X D X LL3 exp(X) [DI] [1/X] LL2 exp(0.1X) Sh2 <0.85 .. 3> SinH(X) LL1 exp(0.01X) Sh1 <0.1 .. 0.9> SinH(0.1X) R E M A R K S : =================================================================== Production Code = 58_2 = Hamburg, 1958, Lot 2 The DEFINITIVE FORMS for the HYPERBOLIC FUNCTIONS are: CosH(X) = ( exp(+X) + exp(-X) ) / 2 <== this is the "Chain Line" SinH(X) = ( exp(+X) - exp(-X) ) / 2 ( eg. suspension bridge ) TanH(X) = SinH(X) / CosH(X) exp(X) = SinH(X) + CosH(X) 1 = CosH2(X) - SinH2(X) CosH(X) = SinH(X) / TanH(X) = sqrt( 1 + SinH2(X) ) = H(X) Using the Hyperbolic Functions: Start with value on the Sh scales ==>> reading SinH on D scale, start with value on the D scale ==>> reading ArcSinH on Sh. Start with value on the Th scale ==>> reading TanH on D scale, start with value on the D scale ==>> reading ArcTanH on Th. The SR came in a leather case together with the »1367« RULER with "Norm Zahlen" = NZ = "Standard Number Sequences" and »Tabelle-A« with CONVERSION-TABLES. Historical Remarks ... impressum: ******************************************************************* © C.HAMANN http://public.BHT-Berlin.de/hamann 08/30/14 |