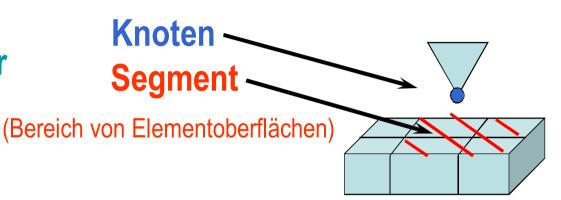


Explizite Finite

Elemente Methode

LV09: Masterkurs für MK-M, ME-M und PE-M

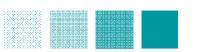
LSDYNA Inputdeck *CONTACT *CONSTRAINED


Prof. Dr.-Ing. Hans-Dieter Kleinschrodt FB VIII: Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik

Kontakt-Arten

Sliding Interface (*CONTACT_Option)

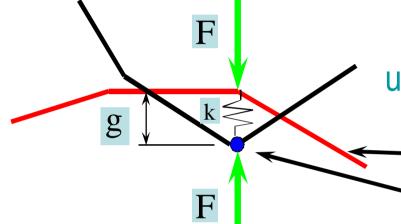
- Slave
- Master


Stonewall (*RIGIDWALL)

- · undurchdringlich, unsichtbar, unbeweglich
- Energie wird dissipiert (siehe Rigidwall-Energy)

Geometic Contact Interfaces (*CONTACT_ENTITY)

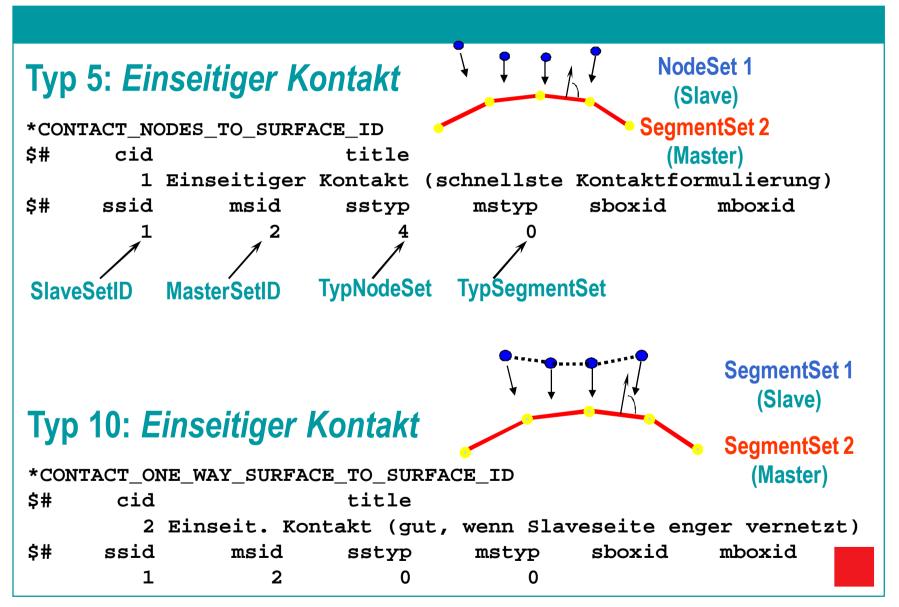
• Ebene, Kugel, Zylinder, Ellypsoid, Torus, ...



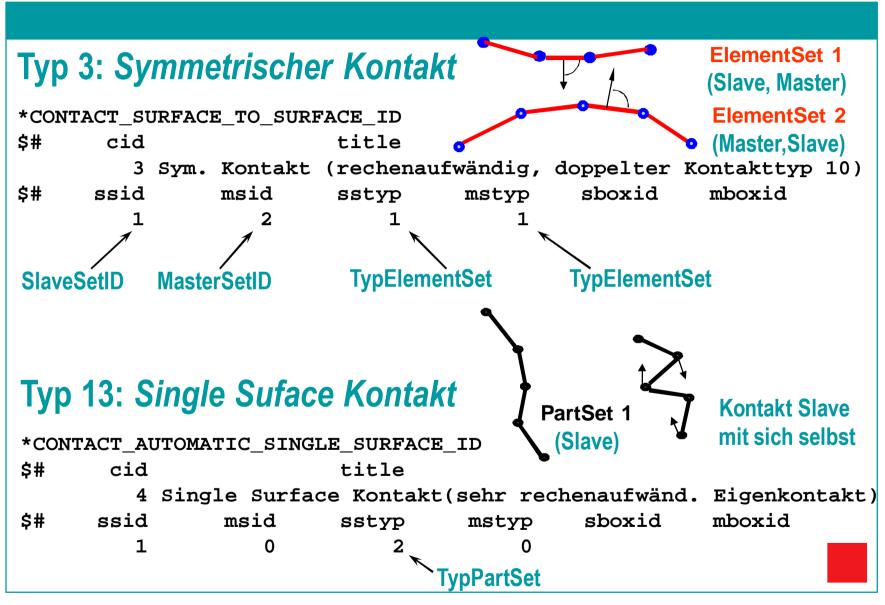
Kontakt - Überprüfung

unerwünschte Durchdringung

Master - Segment Slave - Knoten

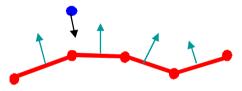

- F = k * g
- $k = x * K * \frac{A}{d}$

- F innere Kraft
- g Eindringtiefe
- k Kontaktsteifigkeit
- K Kompressionsmodul
- A Segmentfläche (Element)
- d Segmentdicke
- x Skalierungsfaktor

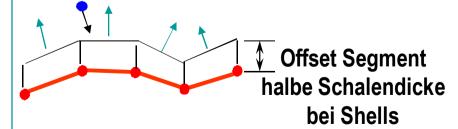

Kontakt – Typ 5 und 10

Kontakt – Typ 26

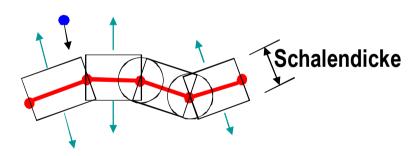
Typ 26: allgemeiner Single Suface (Typ 13 + Edge to Edge)


```
*CONTACT_AUTOMATIC_GENERAL_ID

$# cid title
    5 Single Surface Kontakt(erkennt als einziger BEAM to BEAM)

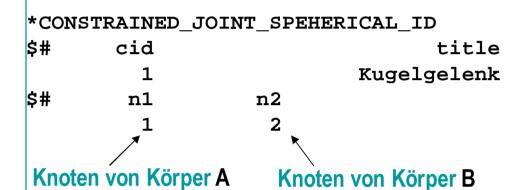

$# ssid msid sstyp mstyp sboxid mboxid
    1 2 3 3

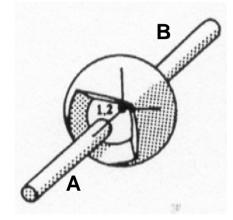
TypPart
```

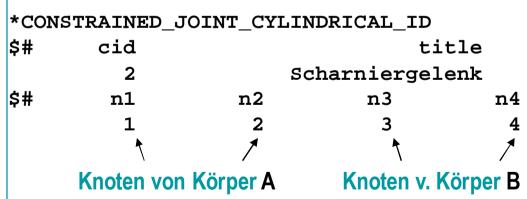

ohne Option AUTOMATIC

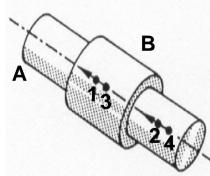
Normalenrichtung wichtig

mit Option AUTOMATIC

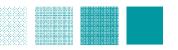

Normalenrichtung der Segemente ohne Bedeutung


(AUTOMATIC_GENERAL ohne Kreise)



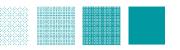

Joints können nur zwischen Starrkörpern definiert werden!

Knoten 1 u. 2 müssen die gleiche Lage haben (koinzident)

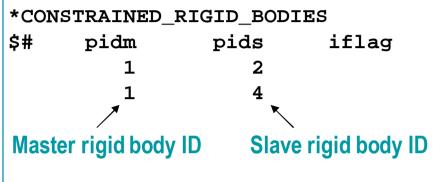


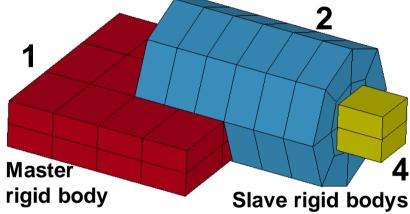
Knoten 1 u. 3 sowie Knoten 2 u. 4 müssen koinzident sein

Anschluss an deformierbare Bauteile oft über Rigid-Spinnen



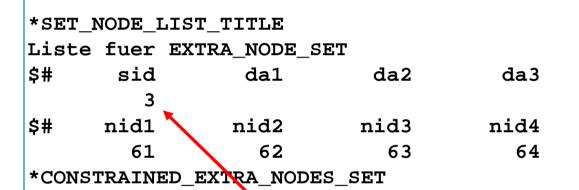
Gelenkanbindung über Rigid Spinnen


Mod	4 0 14	Jahan Ka	and a star of	Deute ("D'				
Node	e 1 u. 2 mit g	jieichen Ko	ordinaten, 2	2 Parts für R	igia-Spinne	n		
*CON	ISTRAINED_J	OINT_SPEH	ERICAL_ID					
\$#	jid			title		Rigid		
	1 Kugelgelenk					•	53 54 52	
\$#	n1	n2	n3	n4	n5	Spinnen	$T_{\rm c}$	
	1	2	0	0	0	Part 4 -	2	
*SEI	_NODE_LIST	TITLE				Part 3	$\Re 1$	
List	e 1 für No	deRigidBo	dy Part 3				*//\	
\$#	sid	da1	da2	da3	da4		44 45 41	
	1						40 41	
\$#	nid1	nid2	nid3	nid4	nid5			
	1	40	44	45	41			
*SET_NODE_LIST_TITLE								
Liste 2 für NodeRigidBody Part 4								
\$#	sid	da1	da2	da3	da4			
	2							
\$#	nid1	nid2	nid3	nid4	nid5	nid6	nid7	
	2	53	51	52	54			
	ISTRAINED_N		_	_	_			
\$#	pid	cid	nsid	pnode	iprt	drflag	rrflag	
	3	0	1					
1	ISTRAINED_N			_				
\$#	pid	cid	nsid	pnode	iprt	drflag	rrflag	
	4	0	2					

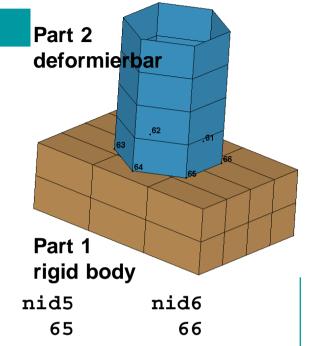


Verbindung von Starrkörpern

Ein oder mehrere Slave-Starrkörper starr mit Master-Starrkörper verbinden



- Wirkung: Alle Aktionen auf den Master-Starrkörper (z.B. Initialgeschwindigkeiten) gelten dann auch für den neuen Gesamtkörper
 - Überschneidungsbereiche der Einzelkörper werden bei der Massenberechnung nicht erkannt
- Hinweise: Ein Knoten darf nicht Teil von zwei Starrkörpern sein (Programmabsturz)
 - Eine Verbindung mittels Rigid-Spinnen ist bei Starrkörpern NICHT möglich
 - Deformierbare Strukturbereiche über EXTRA_NODE_SET anschließen


Verbindung starr - deformierbare Körper

Knoten des deformierbaren Körpers werden einem Starrkörper zugewiesen

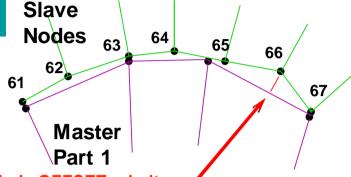
nsid

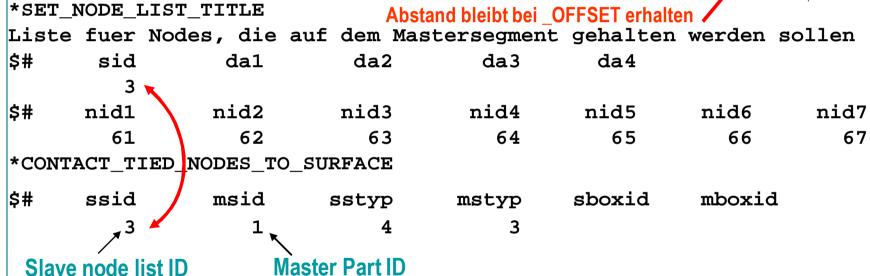
rigid body ID node list ID

pid

\$#

Wirkung: - Alle Extra-Nodes reagieren wie zum Starrkörper gehörend


Hinweis: - Extra-Nodes können außerhalb des Starrkörpers platziert sein

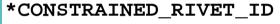


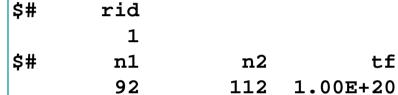
Verbindung zweier deformierbaren Körpern \sim

Wirkung: - Die Slave-Nodes werden mittels Constraint Equations auf

das Mastersegment gezogen und dort gehalten

Hinweis: - Mit der Option _OFFSET wird der ursprüngliche Abstand


zur Segmentfläche mit Penalty-Kräften gehalten



Verbindung zweier deformierbaren Körpern 🚐

Zwei Knoten zweier deformierbare Körper werden verbunden mit Bolzen oder Schweißpunkten

*CONSTRAINED SPOTWELD ID

\$# n2 n1 94 114

sn

SS 1.00E+4 5.00E+4

n

RIVET

m

RV1(92,112)

tf 0.00

ep 0.00

SPOTWELD

Bruch Normal- u. Scherkraft

Wirkung: - RIVET verbindet gelenkig mit einem Pendelstab (Starrkörper)

- SPOTWELD verbindet biegesteif mit einem Balken (Starrkörper)

Hinweise: - Ein Knoten darf nur mit einem Starrkörper verbunden werden

- Dieser Knoten darf keine Lagerung (SPC) erhalten

