overload

DECEMBER 2011 £3

ogn@ely and h@w that affects QU soft;ware

. :
(! 1
\ V ;, 1
v \/
’/, % h Et
- /\\ U o I e e r a a e

We begin a new series looking at ‘ rédundant’
code, and see how striving to removeiedundency.

\ e NAsdriven m Ianguage features
m “

! - L r—— —
wl— - -

A magazine of ACCU ISSN: 1354-3172

OVERLOAD 106

December 2011
ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell @ gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero @howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw @ gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete @ goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 107 should be submitted
by 1st January 2012 and for
Overload 108 by 1st March 2012.

ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

§ GONTENTS

Overload is a publication of ACCU

For details of ACCGU, our publications
and activities, visit the AGCU wehsite:
WWWw.accl.org

4 Move with the Times

Alan Griffiths considers the role of the ACCU, and its
future.

6 The Eternal Battle Against Redundancies, Part |

Christoph Knabe sees how it has influenced
programming languages.

11 From the Aye of Power to the Age of Magic and
heyond...

Sergey Ignatchenko takes a historical perspective on
dominant societies.

14 RAllis not Garhage

Paul Grenyer compares RAIl to garbage collection.

16 Why Polynomial Approximation Won't Cure Your

Richard Harris tries another approach to numerical
computing.

23 Goncurrent Programming with Go

Mark Summerfield introduces some of the concurrent
programming approaches in a new language.

Copyrights and Trade Marks

Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

Overload | 1

FEATURE »

The Eternal Battle Against
Redundancies, Part |

The drive to remove redundancies is widely seen
as a good thing. Christoph Knabe sees how it has
influenced programming languages.

have prevented maintenance and reuse. By ‘redundancy’ we mean

that the same concept is expressed in several locations in the source
code. Over the last 50 years the efforts to avoid redundancies [Wikipedia]
have inspired a large number of programming constructs. This relationship
is often not obvious to the normal programmer. Examples include relative
addressing, symbolic addressing, formula translation, parameterizable
subroutines, control structures, middle-testing loops, symbolic constants,
preprocessor features, array initialization, user defined data types,
information hiding, genericity, exception handling, inheritance, dynamic
dispatch, aspect oriented programming, functional programming, and
even program generators and relational databases. These constructs are
discussed using examples from 14 widely used programming languages.
Whosoever understands the common concept is well equipped for the
future.

Since the beginning of programming, redundancies in source code

What can the Zuse computer say today?

In 1971 my (high) school inherited a 12-year-old Zuse 22 and I learned
programming on it. In the rapidly moving computer domain we would
usually consider using such obsolete technology to be a waste of time. But
this has provided me with the background for a survey of the programming
techniques developed over the last 50 years. The Zuse 22 of the German
computer pioneer Konrad Zuse was one of the first mass produced
computers in the world (55 machines was a lot in those days!). It had a
highly economical construction and was programmed in a machine level
language: the Freiburgian Code. The example program in table 1 adds the
natural numbers from »n decrementing to 1, and prints the result (tested by
the Z22 simulator of Wolfgang Pavel [Pavel]). In practice only the contents
of the Instruction column were punched onto paper tape and read by the
computer as a program. The Address column indicates into which word
the instruction was stored, and the Comment column corresponds to
comments in contemporary languages.

The instructions can have symbolic, combinable operation letters :
B=Bring, A=Add, S=Subtract, T=Transport, U=Umspeichern (store to),
C=Const-Value, PP=if Positive, E=Execute from (go to), D=Drucken
(print), Z=Stop. But the addressing was purely numeric with absolute
storage addresses. Here the variables i and sum are stored at the addresses
2048 and 2049 respectively. The algorithm itself is stored from address
2050, where we jump back using the instruction PPE2050 , if the value
of'i is still positive.

Redundancies appear here in the addresses: 2048 for i appears 4 times,
2049 for sum 3 times, 2050 for the beginning of the program and the loop
twice explicitly and once implicitly (two cells after where the tape content
is stored). As a consequence the program is neither relocatable in the

Christoph Knabe learned programming at high school on a discarded
Zuse 22, studied computer science from 1972, worked as a software
developer at www.psi.de, and since 1990 is professor of software
engineering at the Beuth University of Applied Sciences Berlin
www.bht-berlin.de. Scala is the 14th language in which he has
programmed intensively.

6 | Overload | December 2011

Table1

Address | Instruction Comment

T2048T Transport the following to words 2048 ff.
2048 10' i: Initial value for i is n, here the natural number 10.
2049 0' sum: Initial value is the natural number 0.
2050 B2049 Bring the sum into the accu(mulator).
2051 A2048 Add i to the accu.
2052 U2049 Store (Umspeichern) accu to sum.
2053 B2048 Bring i into the accu.
2054 SCH1 Subtract the Constant value 1 from the accu.
2055 u2048 Store (Umspeichern) accu to i.
2056 PPE2050 |If accu Positive Execute from (go to) 2050
2057 B2049 Bring sum into the accu.
2058 D Print (Drucke) accu.
2059 Z0 Stopp

E2050E Execute now from 2050

working storage nor simply extendable. So there are big difficulties in its
maintenance.

Progress came later for the transistorized Zuse 23 by the development of
‘Relative Addressing’. This enabled a programmer to write a subroutine
as if it was located at address 0. A certain prefix instruction told the loading
program to store the actual start address in a load-time base register, which
was usually register 26. Appending A26 to an address caused the loading
program to add the content of register 26 to the value to form an absolute
address before storing the instruction to be executed later. So when using
relative addressing the conditional jump instruction to the beginning of the
program in table 1 would be PPE2A26 instead of PPE2050. By this means
the program has become relocatable. Relative addressing was still very
economic: it did not need more resources than the register 26 at load time.

True, relative addressing facilitates relocating a subroutine in working
storage, but inside the subroutine it is as inflexible as absolute addressing.
If we wanted to extend the example by inserting a prefix action before the
calculation loop, we would have to shift the relative jump goal 2A26, too.
Thus ‘symbolic addressing” was introduced with the Zuse 23 (sold from
1961). See the German programming manual for the Z23 [Zuse23] p. 65ff.
The Z23 loading program substituted each bracketed identifier of up to 5
characters by its address. The program from table 1 could be rewritten with
the symbolic addresses (I), (SUM), and (BEGIN) as in Listing 1.

Now it is possible to insert further instructions at any place without
destroying the program. This improvement was such a big one that the
assembler for the Siemens 2002 was named after this technique, PROSA
(Programming with Symbolic Addresses). Necessary resources for
symbolic addressing were an addressing program and a symbol table.

n FEATURE

Architecture of the Zuse 22

The design of the Z22 was finished by about 1955, and 55 machines of
this type were produced. It formed a whole generation of computer
specialists in central Europe. The Z22 was characterized by:

B hardware logic implemented by 600 tubes

working storage: a magnetic drum of 8192 words @ 38-bit
registers: a core memory of 14 words @ 38-bit

peripheral storage: 5 hole punched paper tape

console 1/O: push buttons, glow-lamps, teletype with paper tape
reader

B operating frequency: 3 kHz

An instruction consisted of 38 bits: 2 with the value 10, then 5 for
conditions, 13 for operations, 5 for a register address, and 13 for a
working storage address. Each of the condition and operation bits was
programmed by a specific letter and switched a specific gate.

The registers could be accessed by their address, but some were used
for special purposes by some operations. Access time for registers was
always one CPU cycle, for drum words only if they were accessed in
sequence.

Some Registers of the Z22

2 Testable by P or Q if positive or negative

3 Overflow area for accumulator, last bit testable by Y
4 Accumulator, filled by B, added by A, etc., testable by PP etc.

5 Stores return address for subroutines, filled by F

The Zuse 23 of 1961 was logically equivalent, but was implemented using
transistors. It had 40-bit words and up to 255 registers.

We are now acquainted with the most common procedure for redundancy
elimination: The redundant code part gets a name and we use that name
instead of the former, redundant code parts.

T2048T

(1) 10'
(suM) 0'
(BEGIN) B (SUM)
A(I)

U (SUM)
B(I)

sc1

U(I)

PPE (BEGIN)
B (SUM)

D

z0

E (BEGIN)E

Listing 1

In the beginning, technical and scientific calculations dominated computer
applications. But as we can see in the words 2050...2053 of the Z22
example, a simple addition needed three instructions (bring, add, store).
For the formula (a+b)*(a-b) we would need about 7 instructions. So the
need quickly arose for simplifying formula calculations. This was enabled
by formulae with variable identifiers, literals, operator signs, operator
priorities, and parentheses. The programming language FORTRAN got its
name by this feature (Formula Translator). Fortran I was defined in 1956.
At that time there was no possibility of defining your own operators.

If you needed an instruction sequence several times, on the Zuse 22 you
could jump there by using the call instruction F from different program
locations. Besides doing the actual jump, this instruction loaded a ‘jump
back’ instruction into register 5. That is why you had to begin each
subroutine by copying the contents of register 5 to the end of the subroutine
using a U-instruction. This assured a jump back to the calling location
when reaching the end of the subroutine.

But often you don’t need identical, but only similar processing. In this case
Freiburgian Code had the convention of reserving cells before the
subroutine for arguments and results. These had to be filled by the caller
before the call instruction and retrieved afterwards, respectively. Then it
had to jump to the first instruction of the subroutine, which always had to
be B5 followed by a U with the address of the last instruction cell of the
subroutine. So the program from listing 1, converted into a Zuse23
subroutine with entry address SUMUP for summing up the integer numbers
from 1 to n, is shown in listing 2.

In order to print the sum of the numbers from 1 to 20, you could call SUMUP
as follows:

BC20 U(N) F (SUMUP)

While this had to be obeyed as a convention on the Zuse 23, nowadays it
is automated in all higher programming languages by the concept of a
subroutine call with an argument list and return value. FORTRAN II and

B(SUM) D

T2048T

(N) 10'
(SuM) 0'
(SUMUP) B5
U (BACK)

B (SUM)
A(N)

U (SUM)
B(N)

sc1

U(N)

PPE (SUMUP)
(BACK) Z0

Listing 2
December 2011 | Overload | 7

FEATURE »

c COMPUTES THE SUM OF THE NUMBERS FROM 1 TO N

FUNCTION ISUMUP (N)
ISUM = 0
DO 99 I =1, N

99 ISUM = ISUM + I
ISUMUP = ISUM
RETURN
END

Algol introduced the concept of named, parameterized subroutines around
1958. The possibilites for redundancy elimination were enormous and
gave rise to the style of procedural programming. A subroutine in
FORTRAN II for summing up the numbers from 1 to n by a counting loop
is shown in listing 3. Identifiers starting with I to N are considered integers.

Control structures

The building blocks by which programs got their high flexibility and
reusability were conditional jumps such as the PPE instruction of the Zuse
22. Conditional forward jumps could be used to implement conditional
branches. A conditonal backward jump could be used to implement
repetition, which would terminate when the condition no longer held. By
combining these facilities you could construct arbitrarily complex
algorithms. As conditional branches and limited repetitions with or
without a control variable were needed frequently, the popular
programming languages introduced such constructs. In FORTRAN I
(1957) you could sum up the integer numbers from 1 to n by the following
counting loop:

ISUM = 0

DO 99 I =1, N

99 ISUM = ISUM + I

C HERE ISUM CONTAINS THE SUM OF THE NUMBERS
C FROM 1 TO N

FORTRAN had half-symbolic addressing. A statement could be identified
by a freely electable number, a so-called ‘label’. The statement DO 99 I
= 1, Nincremented the control variable I from 1 to N, and each time all
statements up to and including the statement labeled by 99 are repeatedly
executed. For branching FORTRAN I offered the arithmetic IF:

IF (expression) negativeLabel,zeroLabel positiveLabel

This statement jumps to one of the three enumerated labels depending on
the sign of the expression result.

Algol 60 had already introduced nowadays common control structures:

1. A multi-branches cascadable IF: if cond then expr else expr
2. A universal loop with control variable, for example:

B for i := 1 step 1 until 100 do print (i) prints
the numbers from 1 to 100

B for i := 1, i*2 while i<2000 do print(i) prints
the powers of 2 from 1 to 1024.

8 | Overload | December 2011

VAR

X: integer;

sum: integer := 0;
BEGIN

readNumber (x) ;
WHILE x>0 DO BEGIN

sum := sum + X;
readNumber (x) ;
END;
writeln;
writeln('The sum is ', sum, '.');
END
Listing 4

Modern control structures with the purpose of being able to completely
avoid jump instructions were introduced by Pascal (1970). Pascal
distinguished the pre-testing WHILE-DO-loop, the post-testing REPEAT-
UNTIL-loop, and the counting FOR-DO-loop. Nevertheless Pascal still
contained the GOTO statement, as non-local termination could not be done
otherwise

Unfortunately the WHILE-loop, planned for repetitions where the number
of iterations is not known in advance, implies redundancies in the
following use case, which occurs extremely often in practice: We want to
process an unknown number of elements, maybe even none. The code in
listing 4 reads positive numbers and prints their sum. The procedure
readNumber is understood to deliver -1 if it can’t find any further
number. The keywords are typed in upper case, although this is not
important in Pascal.

We see, that the procedure readNumber has to be called redundantly:
Once before the WHILE-loop, the second time at the end of the loop body,
in order to prepare the variable x for the next test of the WHILE-condition.

That is why C (1973), Modula-2 (1978), and Ada (1980) introduced the
possibility of leaving an arbitrary loop by a special jump instruction, in
particular an endless loop. Using this we could solve the above task without
redundancies (C syntax, listing 5).

This corresponds to the general pattern for processing an unknown-in-
advance number of records in a middle-testing loop (listing 6).

Recursion: Recursion is when a function calls itself either directly or
indirectly. The ability to do so was introduced by LISP and Algol at around
the same time, but the then predominant languages FORTRAN and
COBOL did not allow recursion. Some tasks, e.g. traversing trees, are most

int sum=0, x;
for(;;){
readNumber (&x) ;
if (x<=0) break;
sum += x;

Listing 9

initialize

for(;;){
retrieve
if (notSuccessful) break;
process

}
Listing 6

elegantly expressed by recursion. Recursion does not directly contribute
to the elimination of redundancies. If the recursive call is the last statement
of a function, the compiler can replace it by a simple, storage-efficient
loop. Compilers of functional programming languages regularly do this
optimization.

The ability for programmers to define their own control structures was
born in LISP (1958), as in this language instructions and data were notated
in the same form, the so-called S-expressions. They also had the same
internal representation. For example, (TIMES N 7) on the one hand
means the multiplication of N by 7. On the other hand it is simply a list
with the elements TIMES, N, and 7. A function in LISP I, which was
defined as FEXPR instead of the usual EXPR, had a special property. It
evaluated its passed arguments not before executing its function body, but
left this until the explicit usage of the function EVAL in the function body.
So a function body could arbitrarily control the frequency and order of
evaluation of its argments.

Later on when the power of this concept was found out, LISP dialects
introduced comfortable notations to define FEXPRs. For example in
MacLISP you could define an i f-then-else construct, which was not
contained in early LISP, by the traditional COND as follows:

(defun IF fexpr (args)
(let ((predicate (car args))
(then (cadr args))
(else (caddr args)))
(cond
((eval predicate)
(t (eval else)))))

The IF function gets all arguments unevaluated as a list with the name
ARGS. LET assigns the individual arguments to the values PREDICATE,
THEN, and ELSE. COND cvaluates THEN or ELSE depending on the
evaluation of PREDICATE. Example from Steele and Gabriel [LISP].

(eval then))

As a lover of redundancy-free solutions I missed middle-testing loops in
the modern object-functional language Scala (2001). But I could define
one myself (listing 7).

The function loopGetTestProcess has 3 parameter lists. In the first it
expects an expression getItem for obtaining a next item, in the second
a boolean function shouldContinue for judging the success of the
obtainment, and in the third a function processItem for processing the
obtained item. By using the generic parameter [Item] it is assured that

n FEATURE

their own control
structures

def loopGetTestProcess[Item]
(getItem: => Item)
(shouldContinue: Item=>Boolean)
(processItem: Item=>Unit)

{
var item = getItem
while (shouldContinue (item)) {
processItem(item)
item = getItem
}
}

Listing 7

the types fit together. The redundant call of getItemis well encapsulated
in the function body and is not visible in the using source code.

As syntactic sugar in Scala you can write an argument list of length 1 with
curly brackets thus enabling the following usage:

def printlLines(in: java.io.BufferedReader) {
loopGetTestProcess (in.readLine()) (_'=null) {
println
}
}

In Java this could be done by break; and would look like in listing 8.

The big achievement in Scala is that the programmer has defined this
control structure himself and can define others too.

Constants

In working storage every cell is modifiable. That is why there were no
constants in Freiburgian code. By around 1960, the predominant higher
programming languages FORTRAN, Algol, and COBOL had only
variables and literals, usable in expressions. e.g. the literal 2 in the
FORTRAN expression A**2 + 2*A*B + B**2 with ** meaning ‘to
the power of’. A redundancy problem arises, if you must use the same
literal several times. In COBOL 66 you could also use literals to dimension
a variable, for example a west-German ZIP code, which consisted of four
digits, as ZIP PICTURE 9 (4).Butifyouhad done it this way at several
locations in your program code, the reorganisation of the German postal
systems in 1993 obliged you to change all these locations to five digits:
ZIP PICTURE 9 (5). In the early higher programming languages there
was no possibility to declare variable or array sizes free of redundancy.

void printLines (final java.io.BufferedReader
in) {
for(;;){
final String line = in.readLine();
if (line==null)break;
println(line) ;

}

Listing 8
December 2011 | Overload | 9

FEATURE »

Pascal (1970) solved this problem very cleanly by declarable, symbolic
constants, which could be used for dimensioning arrays, as well. E.g.:
CONST zipLength: integer := 4;
TYPE ZipCode = PACKED ARRAY[zipLength] OF

character;
VAR clientZip: ZipCode;
BEGIN
FOR i := 1 TO zipLength DO write(clientZip[i])

Pascal also introduced the concept of user-defined data types (here the type
ZipCode). Along with the symbolic dimensioning constants this enabled
you to define sizes for a whole software system free of redundancies.

C (1973) solved the dimensioning problem less elegantly, as you had to
use preprocessor macros instead of symbolic constants. But on the other
hand you could even do it without explicit size constants, if you used the
sizeof operator. So the same thing expressed in C:

typedef char ZipCode[4]:;

ZipCode clientZip;

int i=0;

for(; i<sizeof (clientZip); i++){

putchar (clientZip[i]) ;
}

C++ (1983) introduced the ability to declare frozen variables at any
location in the program code by the keyword const and by that to build
calculated ‘constants’. Beginning with Java (1995) it became normal to
dimension arrays only at runtime, or to work with the growable collections.

Preprocessor features

Often a preprocessor was used in order to avoid redundancies. So it is
possible to include declarations, which are needed in the same wording in
several compilation units, from one single file. This technique was used
in COBOL (coPY), FORTRAN (INCLUDE), and C (#include). In this
way you could build a data abstraction module in C. You had to write the
function declarations of the module in its header file, and the function
definitions along with the managed module variables in its implementation
file. As an example see the header file stack. h for a stack of characters.
The lines starting with # contain preprocessor directives.

#ifndef stack_h
#define stack_h

#define MAX STACK SIZE 10
void stack_push(char item);
char stack_pop(void) ;

#endif

Every client of this stack has to include the header file stack.h and then
you can call the functions declared therein:

#include "stack.h"

stack_push('X');
About 1985-1995 this was the predominant modularization technique in
industry, before it was superseded by object orientation.

Stringize Operator: The C/C++ preprocessor contains the # operator,
which delivers the name of a given macro argument as a string. With this
you can program without redundancies simple dialogs, e.g. for test
purposes. So you can use in C++ the following macro PROMPT READ in
order to print the name of the passed variable, and to read a value into it
afterwards:

#define PROMPT READ (var) \
{ cout << #var << "? "; cin >> var;}

Using this macro you can program a console dialog as in listing 9.
A typical dialog usage could look as follows:

name? Ulf
age? 22
Ulf is 22 years old.

10 | Overload | December 2011

string name;

int age;

PROMPT READ (name) ;

PROMPT_READ (age) ;

cout << name << " is " << age <<
" years old." << endl;

Generally preprocessors are considered an inelegant solution. That is why
the majority of cases for which you used the preprocessor in C or C++, are
solvable in Java by its own language constructs without a preprocessor.
However in Java the following is not possible:

B determination of the name of a variable as by the stringize
operator in C

B delegation of the abortion of a method execution and some
accompanying action, e.g. errno=FAILURE; return; to
another method

B delegation of a certain pattern of exception handling to another
method.

If we had C-like macros in Java we could write
TRANSACTION (myActionl () ; myAction2())

which would be useful to transform a statement sequence into a
database transaction by

#define TRANSACTION (stmts) \
{try{stmts; commit () ;}catch(Exception e) \
{rollback(e);}}

Array initialization

Pascal introduced redundancy-free array dimensioning, but initialization
still had a problem. As an example we want to declare and initialize an
array in Pascal, which contains codes for three allowed actions. Even in
modern GNU Pascal you have to indicate the array size 3:

VAR actions: ARRAY[1..3] OF char = ('G','P','D");
But the size is redundant in relation to the number of initialization

elements. The more actions you need, the more difficult becomes the
manual numbering.

C introduced to derive an array’s size from the length of its initialization
list: static char actions[] = {'G','P','D'};.Javainherited
this useful feature.

Summary and prospects

The early higher programming languages introduced the possibility of
avoiding redundancies by extraction, parameterization, and naming of a
repeated code snippet. Such code snippets could be: addresses, values, size
indications, declarations, and statement sequences. Some code patterns
were invoked by syntactical units of the programming language, .g. loops.
In the better case the programmer could give a freely electable name to a
code pattern. If a programming language helped to eliminate redundancies
better than a competing language, this was a relevant advantage in the
battle for dissemination.

In the 2nd part of this article we will deal with the more modern techniques
‘information hiding’, genericity, exception handling, object-oriented,
aspect-oriented, and functional programming as well as domain specific
languages and relational data bases, and how they all contribute to
redundancy elimination. W

References

[LISP] Steele/Gabriel: The Evolution of LISP, p. 9:
http://www.dreamsongs.com/Files/HOPL2-Uncut.pdf

[Pavel] http://www.wpavel.de/zuse/simu/

[Wikipedia] http://en.wikipedia.org/wiki/Don%?27t repeat_yourself

[Zuse23] http://www.weblearn.hs-bremen.de/risse/RST/WS04/Zuse23/
Z23Programmierungsanleitung.pdf

http://www.dreamsongs.com/Files/HOPL2-Uncut.pdf
http://www.wpavel.de/zuse/simu/
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://www.weblearn.hs-bremen.de/risse/RST/WS04/Zuse23/Z23Programmierungsanleitung.pdf
http://www.weblearn.hs-bremen.de/risse/RST/WS04/Zuse23/Z23Programmierungsanleitung.pdf

overload

FEBRUARY 2012 £3

/

A Practical Introduction to Erlang

We see some of the main concepts behind V
this language, illustrated Wlth a practlcaﬁample

Memory Leaks aml Memorv Leaks

We look at the commenR sources
of this software fault

. The Eternal Battle ngamst neuunuanmes‘ F

contlnue OUI’]O[%y |nt@ s
and redundarq{ Codes

£ . - <
M' IW S|IGES of P
340101

nveE stlgaterseme of the lssues invelved
iting scalab% parallelralgorlthms using

,J.
r

- Monte'Carlo calclilationfof the'Value ofipi
L -) =X A
[BN - ¢ -

" 8

A magazine of ACCU ISSN: 1354-3172

OVERLOAD 107

February 2012
ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell @ gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero @howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw @ gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete @ goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 108 should be submitted
by 1st March 2012 and for Overload
109 by 1st May 2012.

ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

§ GONTENTS

Overload is a publication of ACCU

For details of ACCGU, our publications
and activities, visit the AGCU wehsite:
WWWw.accl.org

4 Memory Leaks and Memory Leaks

Sergey Ignatchenko investigates a common source of
problems.

6 Many Slices of 7T

Steve Love tries ways at parallelising a simulation
approach to numeric estimation.

14 Why Computer Algebra Won't Cure Your

Richard Harris continues his quest for accurate
numeric computing.

20 The Eternal Battle Against Redundancies, Part2

Christoph Knabe continues to see how removing
redundancies has influenced language design.

24 A Practical Introduction to Erlang

Alexander Demin explores the parallel facilities of a
functional language.

Copyrights and Trade Marks

Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

Overload | 1

FEATURE »

The Eternal Battle Against
Redundancies, Part 2

Repeated information leads to poor quality software.
Christoph Knabe continues to see how removing them

has influenced language design.

have prevented maintenance and reuse. By redundancy we mean that

the same concept is expressed in several locations in the source code.
Over the last 50 years the efforts to avoid redundancies [DRY] have
inspired a large number of programming constructs. This relationship is
often not obvious to programmers in their daily work. In part I [Part1] we
talked about relative addressing, symbolic addressing, formula translation,
parameterizable subroutines, control structures, middle-testing loops,
symbolic constants, preprocessor features, and array initialization. In this
part we will investigate higher concepts like object-oriented, aspect-
oriented, and functional programming, as well as exception handling and
even program generators and relational databases, and how these concepts
contribute to redundancy avoidance. These concepts are discussed on the
basis of prevalent programming languages. Whosoever understands the
common concept is well equipped for the future.

s ince the beginning of programming, redundancies in source code

The principle of information hiding was formulated by Parnas [Parnas]. It
postulates not to allow direct manipulation of a data structure by clients.
Such manipulations are to be done only through operations which are
grouped in an interface. Information hiding was the prevalent design
criterion in modular programming and it still plays an important role in
object-oriented programming.

Enforcing the information hiding principle guarantees that the intended
administration operations cannot be bypassed by a module’s users. This
contributes to redundancy avoidance by the fact that the logic behind the
administrative functions cannot migrate into the user’s code with the risk
of duplication therein. This danger was always present in languages
without support for information hiding.

Secure information hiding was enabled in C (1973) by the declaration of
file-scope static variables. Such variables stayed alive beyond a
function call, but were not accessible from outside the source file. Later
languages which introduced special constructs for module interfaces and
implementations were Modula-2 and Ada.

In C++ (1983) the information hiding principle was extended to user-
defined data types (classes) by giving class members private visibility by
default, which could be explicitly changed to public.

Genericity

COBOL (1960) had composite variables, but only Pascal (1970)
introduced user-defined, composite data types as RECORDs. C (1973)
followed with structs. These constructs increased the robustness of
programs, as confusions of e.g. persons with windows, calendar dates, or

Christoph Knabe learned programming at high school on a discarded
Zuse 22, studied computer science from 1972, worked as a software
developer at www.psi.de, and since 1990 has been professor of
software engineering at the Beuth University of Applied Sciences
Berlin (www.bht-berlin.de). Scala is the 14th language in which he has
programmed intensively.

20 | Overload | February 2012

jobs were detected by the compiler. But the new strictness led to problems
in the creation of universal services. Although Pascal had elegant
operations for dynamic data structures, it was impossible to program a
linked list so that it would be usable for an arbitrary element data type. The
link data and the type of the payload data had to be firmly combined in the
type for a list node. E.g.:

TYPE

PersonList = “PersonNode;
PersonNode = RECORD

info: Person;
nextPtr: “PersonNode;
END;

If you wanted to use the same list management module in Pascal for
different payload data types, you had to copy the source text and globally
substitute the payload data type name.

The somehow less strict C could bypass such problems by using an
untyped pointer, the void*. So in C it was possible, although insecure, to
implement list management for arbitrary payload data. This list node could
be formulated as follows:

struct List {
void* infoPtr;
struct List* nextPtr;
bi
Only Ada (1980) achieved a synthesis of user-defined, composite data
types (records) with flexible type safety. This concept was named
genericity and was accepted by all modern, statically typed languages such
as C++ (templates), Java, C#, and Scala. Using genericity you can avoid
redundancies if you have to define same-behaviour services for different
payload data types. The generic collection classes implemented by this
technique are used quite frequently in all contemporary programming
languages.

Dynamically typed languages such as Smalltalk or Ruby circumvent the
problem described here by postponing the type checks to run-time.

Excenption handling

In older programming languages (Lisp, Fortran, Algol, Cobol, Pascal, C)
there was no automatic handling of exceptions. After every subroutine call
the caller had to check manually whether the subroutine terminated
successfully or erroneously. To complicate matters further there was no
universal convention for how a subroutine should communicate its failure
to the caller. The Unix services written in C used a special value for the
function result as well as error codes in the global variable errno. The
latter way was more suitable for standardization, as it did not have to cope
with different function result types, but it was not suitable for the
upcoming multi-threading.

How was the errno convention applied? After invoking
fopen (filename, "r") in order to open a file you had to check
whether errno had a nonzero value. As there were neither destructors nor
garbage collection mechanisms in C, errors found could not be easily

n FEATURE

Note: The concepts are all talked about on the basis of prevalent
programming languages. But often they were before tried out in research
languages as Simula-67, CLU, MESA, or LISP dialects.

Name Year Innovations

Freiburgian | > 1958 | Programming of the Zuse 22

Code

Freiburgian | 1961 |Relative and symbolic addressing

Code 723

FORTRAN 1957 |Formula translation, FORTRAN II: subroutines,
linker

ALGOL 1958 | Subroutines, block principle, BNF, control
structures, recursion

LISP 1958 | Garbage collection, recursion, functional
programming (FP)

COBOL 1959 | Record variables, long identifiers

Pascal 1970 |Record types, pointer types, structured
programming

Smalltalk 1972 | Dissemination of object-oriented programming
(OOP)

C 1973 | Preprocessor, sizeof, operating system API,
information hiding, break

Modula-2 1978 | Separation of interface/implementation,
if...end

Ada 1980 | Genericity, automatic exception handling

C++ 1983 | Static typesafe OOP, freezing variable values,
late declaration

Java 1995 | Static typesafe OOP with garbage collection,
stack trace API

AspectJ 2001 | Centralized solution of cross-cutting concerns

Scala 2003 | Static typesafe synthesis of OOP and FP

collected in working storage, so tended to be immediately reported. But
this limited the universal usability of a subroutine, as then the destination
of error reporting was not easily chosen by the caller.

So the correct handling of a function call in C on Unix, here of the function
fopen, appeared as follows:

FILE* pFile = fopen (filename,
if (errno!=0) {
perror (filename) ; //prints errno and filename
fprintf (stderr, "at file %s in line %d\n",
__FILE__, _LINE_);
errno = FAILURE;
return NULL;

"r") .
’

}
You can easily imagine that correct error handling was highly redundant
and made program texts harder to read and understand, and so harder to
maintain. Furthermore, you had to write so much to implement this

handling that programmers rarely practised it. Fortunately C’s
preprocessor macros offered a means to partially eliminate this
redundancy. You could extract the portion of the example from i £ up to
return NULL;} into a macro, which should get a context and the
function result in case of failure as arguments.

#define ERRCHECK (context, failResult)
The invocation of fopen could then be much shorter:

FILE* pFile = fopen (filename,
ERRCHECK (filename, NULL)

"r") .
’

This approach cannot yet solve the problem of functions failing when they
were combined in expressions, e.g. £ (x) *g (x) . ERRCHECK could only
be applied between two statements, not inside an expression.

Such error handling, which was implemented here manually, is done by
contemporary languages automatically, when a function throws an
exception. Standardized handling (usually a message with stack trace and
program abortion) is guaranteed, although custom handling is possible.
Automatic exception handling was popularized by Ada 80. C++ adopted
it around 1990, while Java contained it from the beginning (including an
APT access to the stack trace of a caught exception).

The technique of object-orientation, introduced by Simula 67 and
popularized by Smalltalk-80, adopts ‘information hiding’ for object
attributes and contains as innovations ‘inheritance’, ‘reference
polymorphism’, and ‘dynamic method dispatch’. Inheritance alone
enables a minor avoidance of redundancy by extracting the common state
and behaviour of several data types into a base class. Compared to
composition this saves only a (relatively) small amount of writing when
accessing an inherited attribute or method. Polymorphism of references
enables a flexibility similar to the untyped pointers of C, but considerably
more secure, as it constrains the referenced elements to subclasses of the
base class. With dynamic dispatch for calls of virtual functions (C++,
1983) came the big, redundancy-avoiding progress, which is nowadays
commonly known as the ‘Template Method Pattern’ [TemplMeth].

Template Method Pattern: As an example let us have a look at the
problem of transaction management. In enterprise applications each
operation of the business logic must be executed as a transaction. If the
logic operation succeeds, the database modifications must be committed,
otherwise errors must be reported and the database modifications must be
rolled back. Instead of redundantly programming this behaviour in each
logic method, you can extract it into an execute on a base class
Transaction, which will call an abstract action method, which has
to be overridden with the concrete logic operation. In Java, the solution
looks like Listing 1.

The template method execute follows a fixed procedure in order to
guarantee the commit or rollback. Only the business logic part of the
action is conferred in the template method upon the abstract method
doAction. The programmer of the subclasses has then to implement this
method. Usage would follow the pattern shown below and would appear

February 2012 | Ouerload | 21

FEATURE »

abstract class Transaction {
public void execute() {
final Connection con =

DatabaseUtil.getConnection() ;

try{
doAction() ;
con.commit () ;

}catch (Exception ex) {
report (ex) ;
con.rollback() ;

}

abstract void doAction() throws Exception;

Listing 1

in a real system hundreds of times, which leads to an enormous reduction
of redundancy, although the amount of code is still problematic.

new Transaction() {
public void doAction() throws Exception {
//Here the actual logic operation is placed.

}

} .execute() ;

An alternative solution in Java would make use of reflection [Refl], as done
by EJB 3.0 application servers internally. Each method of a class annotated
as @Session is executed as a transaction.

Mixin Programming: In contrast to Java inheritance, Scala (2003) allows
the mixing in of several fraits (partially implemented interfaces), each of
which can offer such template methods. The ‘diamond problem’ usually
occurring with multiple inheritance is avoided by an explicitly definable
resolution order. By this means you can freely combine different services
in a class. In fact the Scala collections framework stands out due to an
extremely high internal re-use of a few template methods. This is a big
contribution to redundancy avoidance.

Aspect-oriented programming enables you to handle concerns that cut
across a software system centrally in an aspect. The above-mentioned
problem of transaction management is exactly such a cross-cutting
concern. Let us consider the case where each method of a logic facade
should be executed as a transaction. Although the above solution,
implementing the method doAction in an anonymous subclass of
Transaction, is technically free of redundancy, it needs a lot of code.
In contrast to this, in the solution with Aspect] (2001) in Listing 2, the
aspect needs to be noted only once for the whole system. The ‘pointcut’
executeAnyFacadeMethod captures each execution of a method of
objects of the type LgFacade. The around advice surrounds the captured
method executions at the location, marked by proceed, thus causing the
unified transaction management. This solution is not only technically, but
also textually, free of redundancies. Usage of Aspect] in Java projects can
deliver enormous redundancy savings straightaway.

22 | Overload | February 2012

aspect TransactionAspect {
pointcut executeAnyFacadeMethod
(LgFacade lgFacade):
execution (public * *(..)) && this(lgFacade)

Object around(LgFacade lgFacade):
executeAnyFacadeMethod (1gFacade) {
final Connection con =
DatabaseUtil.getConnection() ;
try{
final Object result = proceed(lgFacade) ;
con.commit () ;
return result;
}catch (Exception ex) {
report (ex) ;
con.rollback() ;

Listing 2

Of the many and powerful constructs of Functional Programming I want
to demonstrate only one, which facilitates the extraction of control
structures. We take the every-day example that a list of persons should be
displayed in a special format obtainable by method getName of class
Person. In Java 5 we would need the function in Listing 3 to transform
a list of persons into such a format.

A usage would look like:
personsToNames (persons)

The corresponding transformation in Scala would be so compact that no
one would write a special function for this purpose:

persons.map (_.getName)

This is possible since the function map from the Scala collections library
contains the above algorithm in a general solution and calls the argument
function for each element of the List. Using the underscore sign _ we
define a mapping from an anonymous argument to the expression

public List<String> personsToNames
(final List<Person> persons) {
final List<String> names =
new LinkedList<String>();
for (final Person p: persons) {
names.add (p.getName()) ;
}

return names;

Listing 3

n FEATURE

containing the underscore. The type of the argument is inferred from the
element type of persons and thus needs not to be indicated explicitly.

In a similar way, in Scala you could guarantee the above-mentioned
transaction management. What should be executed as transaction would
have to be packed into transaction{. ..}, if the method
transaction is suitably defined. This solution is technically free of
redundancies, but it needs slightly more code than with Aspect]. In
contrast, Scala needs only a minimum of keywords in comparison to
Aspect].

Program generators / domain specific languages

Sometimes an application needs highly redundant code patterns, but the
programming language used does not offer a means to extract them. In such
circumstances, as last resort, you could use a brute-force means: code
generation. You define a special language, tailored to the problem, in
which you can express yourself without redundancies. From that language
you generate program code. Classical examples are decision table code
generators like DETAB/65 or parser generators like yacc. As an example
we give a rule of the contemporary parser generator ANTLR for
multiplicative operations. This rule means: A product is a sequence of
factors, which are separated by '*' or '/'.

product
factor
('*' factor
| '/' factor

) *
From this ANTLR can generate a parser which recognizes expressions like
a*b/c*d. You can expand this parser to an interpreter or translator by
inserting actions at the end of each line.

Redundancies also cause problems in data storage. An example for this is
a table of employees with the columns Id, Name, Date of Birth and
Department.

Id Name Date of Birth Department
1 Seyfried, Janina 17.01.1974 Human Resources
2 |Stahl, Georg 06.06.1985 |Sales
3 |Schmidt, Sebastian |26.09.1979 |Development
4 [Mller, Friederike 19.11.1987 Sales

Ifthe department is indicated as a string for each employee, this constitutes
a data redundancy causing the following problems: If there is a typo in a
department name, the affiliation of the employee to the department can not
be recognized automatically. A renaming of a department necessitates
modification of many employee rows.

The redundancy-free solution comprises the management of an additional
table for departments, whose rows are referred to by a departmentId

from each employee. Exactly this is achieved by normalization according
to the concept of relational databases.

This section lists relevant milestones in evolution of programming
languages, which are not useful for redundancy avoidance, but are
nevertheless worthy of mention.

B Robustness of programs was boosted by the declaration principle
(Algol 58), by the locality helped by the block principle (Algol 58)
and the late compilation in conjunction with a linker (FORTRAN,
COBOL).

m Coding convenience was boosted by dynamically typed languages
(LISP) or by the concedeclaration of variables only at their first
usage (C++, 1983), by the freezing of computed values (C++), by
‘Garbage Collection’ instead of explicit deallocation (LISP, 1958).

® Labour division in development was boosted by the technique of
separate pt of static type inference (Scala, 2003).

® Understandability was boosted by comments beginning with full
line comments in FORTRAN with C, block comments in Algol with
comment up to ;, end of line comments in Ada with --,
documentation comments in Java with /** up to nested block
comments in Scala. COBOL pioneered long identifiers significantly
helping understandability.

Summary

When you see how painfully the steps of progress in programming were
achieved over the last 50 years, you really learn to appreciate the state of
the art. Even more interesting is recognizing the driving force behind this
progress. High redundancies in source code regularly required new
programming constructs. In the majority of cases the ability was
introduced to give a freely electable name to the redundant code pattern,
and to invoke it with parameters from several locations. This happened to
addresses, constants, subroutines, classes and generic units. Sometimes the
evolution did not go as far and the redundant code patterns only received
new keywords. This happened to formulas, loops, branches, and exception
handling. When a programming language helped to eliminate
redundancies better than a competing language, this was an advantage in
the battle for dissemination. We can assume that this will still be true in
future. m

References and further reading
[DRY] http://en.wikipedia.org/wiki/Don%?27t_repeat_yourself

[Parnas] http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/
criteria.pdf

[Part1] Christoph Knabe: ‘The Eternal Battle against Redundancies,
Part I’, Overload 106, December 2011, accu.org, pp. 6-10

[Refl] http://en.wikipedia.org/wiki/
Reflection_%28computer_programming%29

[TemplMeth] http://en.wikipedia.org/wiki/Template method_pattern

February 2012 | Ouerload | 23

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
http://en.wikipedia.org/wiki/Reflection_%28computer_programming%29
http://en.wikipedia.org/wiki/Reflection_%28computer_programming%29
http://en.wikipedia.org/wiki/Template_method_pattern

	The Eternal Battle Against Redundancies, Part I
	The Eternal Battle Against Redundancies, Part 2

