
The Eternal Battle
Against Redundancies

A redundant history
of Programming

Part I: Early Concepts

Christoph Knabe @ Scala User Group Berlin-Brandenburg, 15.05.2013

2

Battle Against Redundancy

Ch. Knabe

 My Biography & Introduction
 Addressing
 Formula Translation
 Parameterizable Subroutines
 Control Structures
 Middle-Testing Loops
 Constants & Dimensioning
 Preprocessor Features
 Array Initialization
 User Defined Datatypes
 Type Inference

Contents

3

Battle Against Redundancy

Ch. Knabe

1971 learned programming on a 15 years old Zuse 22 at school.
1972... studied Computer Science in Bonn
1981... worked as Software Developer at PSI, Berlin
1990... Professor of Software Engineering at Beuth University, Berlin

Interests: Web Development, Scala, Redundancy elimination
Programmed intensively in 14 languages:
Freiburger Code, ALGOL 60, Basic, FORTRAN IV, PL/1, LISP F4, COBOL
74, Pascal, Unix-C, C++, Ada '83, Java, AspectJ, Scala

Biography & Introduction

Redundancy: Multiple Description of same feature
Enemy of maintainability

Thesis: Programming Languages evolved driven by
the necessity to avoid redundancies in source code.

4

Battle Against Redundancy

Ch. Knabe

1938 Z1: mechanical, programmable, binary floating
point, modules: processor, storage, program
decoder, I/O.

1941 Z3: elektromechanical, 24bit,
working successor, Turing-complete
Image: Konrad Zuse with reconstructed Z3

1949 Z4: First commercially used computer (leased)

1955 Z22: Electronic Valves, 38-bit words, 16 kernel
registers, 8192 storage words on magnetical drum,
analytical instruction code. Sold: 55 machines.

The Zuse computers

5

Battle Against Redundancy

Ch. Knabe

Summation of Numbers from 10 to 1 (decrementing)

Zuse 22 Freiburger Code (1958): Absolute Adresses

Adress Instruction Explanation

T2048T Transport the following from punched tape to words 2048 ff.

2048 10' i: Initial value for i is n, here the integer number 10.

2049 0' sum: Initial value is the integer number 0.

2050 B2049 Bring the sum into the accu(mulator).

2051 A2048 Add i to the accu.

2052 U2049 Store (Umspeichern) accu to sum.

2053 B2048 Bring i into the accu.

2054 SC1 Subtract the Constant value 1 from the accu.

2055 U2048 Store (Umspeichern) accu to i.

2056 PPE2050 If accu Positive Execute from (go to) 2050.

2057 B2049 Bring sum into the accu.

2058 D Print (Drucke) accu.

2059 Z0 Stop

E2050E Execute now from 2050
Redundante Adressen: 2048, 2049, 2050

6

Battle Against Redundancy

Ch. Knabe

Avoiding redundant absolute Addresses. Give it a name!

Relative and Symbolic Addressing

Z22
absolute

Z22 relative,
base reg. 12

Z23 symbolic Explanation

T2048T T2048T… T2048T Transport the following to words 2048 ff.

10' 10' (I) 10' i: Initial value for i is n, here integer 10.

0' 0' (SUM) 0' sum: Initial value is the integer number 0.

B2049 B1A12 (BEGIN) B(SUM) Bring the sum into the accu(mulator).

A2048 A0A12 A(I) Add i to the accu.

U2049 U1A12 U(SUM) Store (Umspeichern) accu to sum.

B2048 B0A12 B(I) Bring i into the accu.

SC1 SC1 SC1 Subtract the Constant value 1 from the accu.

U2048 U0A12 U(I) Store (Umspeichern) accu to i.

PPE2050 PPE2A12 PPE(BEGIN) If accu Positive Execute from (go to) beginning.

B2049 B1A12 B(SUM) Bring sum into the accu.

D D D Print (Drucke) accu.

Z0 Z0 Z0 Stop

E2050E E2A12E E(BEGIN)E Execute now from (go to) beginning.

7

Battle Against Redundancy

Ch. Knabe

Computing initially dominated by science & technics.

Assembler: Simple addition needs 3 instructions
(bring, add, store).

Formula (a+b)*(a-b) would need about 7
instructions.

FORTRAN introduced Formula Translation in 1956.

Formulae had variable identifiers up to 6
characters, literals, operator signs, operator
priorities, and parentheses.

No possibility to define own operators.

Formula Translation

8

Battle Against Redundancy

Ch. Knabe

Instruction sequence needed several times ⇒ On
Zuse 22 jump there by F (ruF=call) instruction from
different program locations.

Besides jumping F loaded a „jump back“ instruction
into register 5 ⇒ convention: Copy this to end of
subroutine. Assures jump back to calling location.

For parameterized processing reserve words before
the subroutine for arguments and result. Caller must
store there before call and retrieve result afterwards.

Call a Zuse 23 subroutine for summing up 1..20:

Subroutines

BC20 U(N) F(SUMUP) B(SUM) D

9

Battle Against Redundancy

Ch. Knabe

Summation of Numbers from N to 1 (decrementing)

Subroutine in Zuse 23 Assembler

Address Instruction Explanation

T2048T Transport the following from punched tape to words 2048 ff.

(N) 999999' Space for argument n, lateron decremented as i.
(SUM) 999999' Space for result sum. Also used as intermediate result.

(SUMUP) B5 Entry point: Bring „jump back“ instruction into accu.

UN(BACK) Store (Umspeichern) accu to „jump back“ word. Nullify accu.

U(SUM) Store accu, which is 0, to sum.

(LOOP) B(SUM) Bring the sum into the accu(mulator).

A(N) Add i to the accu.

U(SUM) Store (Umspeichern) accu to sum.

B(N) Bring i into the accu.

SC1 Subtract the Constant value 1 from the accu.

U(N) Store (Umspeichern) accu to i.

PPE(LOOP) If accu Positive Execute from (go to) 2050.

(BACK) Z0 Space for „jump back“ instruction

10

Battle Against Redundancy

Ch. Knabe

Convention on Zuse 22/23:
 Space for arguments, result value
 call instruction, must save „jump back“ instruction

Automated by the concept of subroutine call with
argument list and return value in ALGOL and
FORTRAN II in 1958.

Subroutine as Programming Construct

C COMPUTES SUM FROM 1 TO N IN FORTRAN II
 FUNCTION ISUMUP(N)
 ISUMUP = 0
 DO 99 I = 1, N
 99 ISUMUP = ISUMUP + I
 RETURN

- Implicit types: I-N means Integer. No Recursion.
+ Separate compilation, COMMON storage blocks

11

Battle Against Redundancy

Ch. Knabe

Conditional jumps as PPE of Zuse 22
 enabled arbitrary algorithms.
Conditional forward jumps for branching,
Conditional backward jumps for repetition.

FORTRAN I (1956) introduced
Arithmetic IF:
 IF(expression) negativeLabel, zeroLabel, positiveLabel

Jumps to one of the labels, depending on the value
of the expression. Labels were numeric ☹.

Counting Loop:
 DO label var = initExpr, limitExpr, IncrExpr
 statements
 label lastStatement

Control Structures

12

Battle Against Redundancy

Ch. Knabe

ALGOL 60 (Algorithmic Language) pioneered:
* Definition by formal grammar (Backus-Naur-Form)
* Declaration Principle, explicit types
* Block principle (local variables)
* Recursion
* Modern looking control structures:

Multi-branch cascadable IF:
 IF condition THEN expr ELSE expr

Universal loop with control variable:
 FOR I := 1 STEP 2 UNTIL 99 DO PRINT(i)

prints odd numbers between 0 and 100.
 FOR I := 1, I*2 WHILE I<2000 DO PRINT(I)

prints the powers of 2 from 1 to 1024.

ALGOL 60 Control Structures

13

Battle Against Redundancy

Ch. Knabe

Pascal (1970) pioneered :
* User-defined data types (RECORDs)
* Structured Programming (avoid jumps)

Multi-branch cascadable IF like in ALGOL:
 IF condition THEN expr ELSE expr

Pre-testing loop:
 WHILE condition DO statement

Post-testing loop:
 REPEAT statements UNTIL condition

Counting loop:
 FOR initialValue TO finalValue DO statement

Nevertheless contained GOTO, as non-local
termination could not be done otherwise.

Pascal Structured Programming Control Structures

14

Battle Against Redundancy

Ch. Knabe

Processing an unknown number of elements.

Pascal Loop Redundancy Problem

{Get positive numbers and print their sum}
VAR
 x: integer;
 sum: integer := 0;
BEGIN
 getNumber(x); {Sets x by a VAR parameter!}
 WHILE x>0 DO BEGIN
 sum := sum + x;
 getNumber(x);
 END;
 writeln;
 writeln('The sum is ', sum, '.');

Problem: getNumber has to be called redundantly.

15

Battle Against Redundancy

Ch. Knabe

C (1973), Modula-2 (1978), and Ada (1980) thus
enabled a middle-testing loop by a terminating jump
instruction:

Introducing middle-testing Loop

/*Read positive numbers and print their sum in "C"*/
int sum=0, x;
for(;;){
 getNumber(&x); //Enables setting x by passing its address!
 if (x<=0) break;
 sum += x; //Redundancy-free incrementation!
}
printf("The sum is %d.", sum);

Hurrah: getNumber call coded only once.

Pattern: get, test, process

16

Battle Against Redundancy

Ch. Knabe

Enabled in LISP (1960).

Instructions and data in same format: S-Expression
(TIMES N 7) means
a) multiply N by 7
b) a list with elements TIMES, N, and 7.

A function, defined as FEXPR (instead of usual
EXPR), did not evaluate its arguments.
Left to explicit call of EVAL in the function body.
So body could control frequency and order of
argument evaluation.

User-Defined Control Structures: LISP I

17

Battle Against Redundancy

Ch. Knabe

LISP dialects introduced comfortable FEXPRs.
In MacLISP by defun. Defining IF-expression:

Defining IF-Statement in MacLISP (on PDP-10)

(defun IF fexpr (args)
 (let ((predicate (car args))
 (then (cadr args))
 (else (caddr args)))
 (cond
 ((eval predicate) (eval then))
 (t (eval else)))))

For calculating absolute value of n now can use if:
(if (greater n 0) n (minus n))

Instead of traditional multi-branch cond:
(cond
 ((greater n 0) n)
 (t (minus n))
)

18

Battle Against Redundancy

Ch. Knabe

Middle-Testing loop self-defined:

Control Abstraction in Scala (2003)

def loopGetTestProcess[Item]
 (getItem: => Item)
 (shouldContinue: Item=>Boolean)
 (processItem: Item=>Unit)
{
 var item = getItem
 while(shouldContinue(item)){
 processItem(item)
 item = getItem
 }
}

Usable free of redundancy:
val in: java.io.BufferedReader = …
loopGetTestProcess(in.readLine())(_!=null){
 println
}

19

Battle Against Redundancy

Ch. Knabe

Storage cells modifiable
⇒ No constants in Freiburger Code.

In 1960 FORTRAN, ALGOL, and COBOL had
literals, but no symbolic constants.

Dimensioning problem:
In COBOL 66 a west-german ZIP code declarable as
 ZIP PICTURE 9(4).
If needed in some places, size was redundant
⇒ In 1993 modifications necessary:
 ZIP PICTURE 9(5).

Constants & Dimensioning

20

Battle Against Redundancy

Ch. Knabe

Systematic Approach:
Symbolic Constants usable for dimensioning arrays:

Dimensioning Constants in Pascal (1970)

CONST zipLength: integer := 4;
TYPE ZipCode = PACKED ARRAY[zipLength] OF character;
VAR clientZip: ZipCode;
BEGIN
 FOR I := 1 TO zipLength DO write(clientZip[i]);

User-defined data types.
Help avoid redundant structural definitions.

TYPE Person = RECORD
 name: Name;
 age: integer;
END;

21

Battle Against Redundancy

Ch. Knabe

- Constants only as preprocessor macros
+ sizeof-operator for redundancy-free iterating

Dimensioning in C (1973)

char clientZip[4]; ...
int i =0;
for(; i<sizeof(clientZip); i++){
 putchar(clientZip[i]);
}

C++ (1983) enabled to declare frozen variables by
const.

Beginning with Java (1995) it became normal to
dimension arrays only at runtime or to use growable
collections.

22

Battle Against Redundancy

Ch. Knabe

Often preprocessor used for avoiding redundancies.
E.g. include common declaration into several
compilation units.

COPY in COBOL, #include in C.

Used for data abstraction module in C:
* declaration of exported functions in .h file
* function definitions + managed variables in .c file

See next slide.

Preprocessor Features, C (1973)

23

Battle Against Redundancy

Ch. Knabe

Header file stack.h for a stack of characters:

Stack Module in C (1973)

#ifndef stack_h
#define stack_h

#define MAX_STACK_SIZE 10
void stack_push();
char stack_pop();

#endif

Every client of this stack had to include stack.h.
Then call functions:
#include "stack.h"
…

stack_push('X');

About 1985-1995 predominant modularization
technique in industry before OOP.

24

Battle Against Redundancy

Ch. Knabe

operator in preprocessor macro delivers the
passed argument as string.

Stringize Operator in C/C++

#define PROMPT_READ(var){cout << #var << "? "; cin >> var;}

Enables redundancy-free console dialog program:
string name;
int age;
PROMPT_READ(name);
PROMPT_READ(age);
cout << name << " is " << age << " years old. " << endl;

Typical dialog:
name? Ulf
age? 22
Ulf is 22 years old.

25

Battle Against Redundancy

Ch. Knabe

* determine name of a variable.
 Reflection not applicable to variables.
* delegate method abortion
 and accompanying action, e.g.
 errno=FAILURE; return;
 * delegate pattern of exception handling:
 If we had C-like macros in Java we could write:
 TRANSACTION(action1(); action2();)
 to perform stmt sequence as database transaction
 by defining the following macro:

Missing Preprocessor Features in Java

#define TRANSACTION(stmts) \
{try{stmts; commit();}catch(Exception e){rollback(e);}}

26

Battle Against Redundancy

Ch. Knabe

* Pascal: Redundancy-free array dimensioning
* But initialization was left redundant.

See array for 4 allowed action codes:

Array Initialization and Dimensioning

VAR actions: ARRAY[1..4] OF char = ('C', 'R', 'U', 'D');

Size is redundant to number of elements.

C derived array size from initialization list:
static char actions[] = {'C', 'R', 'U', 'D'};

C derived array size from initialization string as well:
char message[] = "Hello";
assert(sizeof(message) == 6) //including terminating '\0'

27

Battle Against Redundancy

Ch. Knabe

Java: Redundant type indication in declaration:

Type Inference & Initialization

final StringBuilder out = new StringBuilder();

Avoidable by type inference in Scala:

val students = new HashMap[Integer,String]

val out = new StringBuilder

But if we need a collection:

Bad style. Better to program against interface:
val students: Map = new HashMap[Integer,String]

Here Scala infers not the reference type (Map),
but its type parameters avoiding redundancy.

28

Battle Against Redundancy

Ch. Knabe

Summary

 Early Programming Languages introduced
extraction and parameterization of a redundant
code snippet.

 Sometimes by keywords. See loops, sizeof
 In the better case freely nameable. See

addresses, constants, subroutines, types,
include files, macros, Scala loops.

 Language dissemination powered by features
for redundancy elimination.

29

Battle Against Redundancy

Ch. Knabe

Der ewige Kampf gegen Redundanzen
Eine redundante Geschichte der Programmierung
JavaMagazin 1.2012 und 2.2012:
http://jaxenter.de/Der-ewige-Kampf-gegen-Redundanzen-4415.html
http://jaxenter.de/Eine-redundante-Geschichte-der-Programmierung%3A-Von
-Parnas-bis-Scala-4497.html

The Eternal Battle Against Redundancies
A Redundant History of Programming
OVERLOAD (accu.org) Dec. 2011 und Feb. 2012:
http://accu.org/var/uploads/journals/overload106.pdf
http://accu.org/var/uploads/journals/overload107.pdf

Publications

http://jaxenter.de/Der-ewige-Kampf-gegen-Redundanzen-4415.html
http://jaxenter.de/Eine-redundante-Geschichte-der-Programmierung%3A-Von-Parnas-bis-Scala-4497.html
http://jaxenter.de/Eine-redundante-Geschichte-der-Programmierung%3A-Von-Parnas-bis-Scala-4497.html
http://accu.org/var/uploads/journals/overload106.pdf
http://accu.org/var/uploads/journals/overload107.pdf

30

Battle Against Redundancy

Ch. Knabe

Topics for Part II

 Information Hiding
 Genericity
 Exception Handling
 Object-Oriented Programming
 Aspect-Oriented Programming
 Functional Programming
 Domain Specific Languages
 Database Normalization

And how all can help to avoid redundancies.

Thank You

	Titelseite
	Inhaltsverzeichnis
	Bio & Intro
	Zuse computers
	Zuse 22 Freiburger Code
	Relative, Symbolische Adressierung
	Formula Translation
	Subroutines
	Z23 subroutine SUMUP
	Subroutine construct
	Jump to Loop
	ALGOL control structures
	Pascal Structured Programming
	Pascal Loop Redundancy
	Middle-testing Loop
	User-Defined Control: LISP
	MacLISP-IF-THEN-ELSE
	Control Abstraction
	Constants & Dimensioning
	Dimensioning Constants in Pascal
	Dimensioning in C
	Preprocessor Features
	Stack Module in C
	Stringize Operator in C
	Java Missing Preprocessor
	Array Initialization & Dimensioning
	Type Inference
	Summary
	Publications
	Topics Part II
	Ende

