Introduction to pharmacokinetics

Michael Meyer

Outline

• Introduction
 importance of pharmacokinetics

• Basic aspects of pharmacokinetics
 pharmacokinetic parameters, compartment models, statistical models, single and multiple dosing

• Bioavailability
 analysis, physicochemical basis

• ADME processes
 absorption, distribution, metabolism, excretion
Pharmacokinetics

- Definition

 description of the time dependent processes acting on a drug in an organism

 liberation
 absorption
 distribution
 metabolism
 excretion

- Toxicokinetics

 kinetics applied to toxicology

Pharmacokinetics II

- Relevance

 characterisation of ADME properties of a drug or a metabolite as a function of time

 determination of the optimal therapeutic scheme
 type and frequency of administration, dose

 therapeutically relevant drug concentration at the place of action

 comparison of different formulations of the same drug

 drug interactions (pharmacokinetic interactions)
Basic aspects of pharmacokinetics

Linear and non-linear pharmacokinetics

- Linear pharmacokinetics

 linear relation between dose and plasma concentration

 in a given interval always the same drug fraction is eliminated

- Non-linear pharmacokinetics

 no linear relation between dose and plasma concentration

 reasons for non-linearity:
 saturation of enzymatic processes,
 enzyme induction,
 active transport processes, ...
Area under the plasma concentration curve

- Area under the curve (AUC)

\[AUC = \int_{0}^{\infty} C(t) dt \]

Area under the curve II

- The integral can be calculated using the trapezoidal rule for numerical integration

\[AUC_{0,1} = \frac{(c_0 + c_1)}{2} (t_1 - t_0) \]

\[AUC_{1,2} = \frac{(c_1 + c_2)}{2} (t_2 - t_1) \]

\[AUC = \sum_{i=1}^{n-1} AUC_i \]

if necessary extrapolation \(t \rightarrow \infty \)
Clearance

Many drugs are eliminated in a first order process, i.e. the amount of drug eliminated is proportional to the amount of drug in the plasma.

- Clearance CL

 volume of plasma purified from drug per time interval

 the clearance is constant and independent of the drug concentration in a first order process

 relation between clearance, intravenous dose and area under the curve

 \[CL = \frac{D_{iv}}{AUC} \]

Volume of distribution

- The volume of distribution \(V_d \) is the amount of drug in the body divided by the plasma concentration

 \[V_d = \frac{X}{C} \]

 it is the apparent volume of a solution required to obtain the observed plasma concentration
Half life

- Time interval required to eliminate half of the drug quantity (refers frequently to the terminal elimination phase).

- Example
 - the half life $t_{1/2}$ of a drug is 2 h
 - What is the percentage eliminated after 4 h?

 - 2 h: 50% eliminated, 50% remaining
 - 4 h: 50% + 25% = 75% eliminated, 25% remaining

- Relation to primary variables

 $t_{1/2} = 0.693 \frac{V_d}{CL}$

Compartment models

- Linear kinetics for iv injection

 $\text{bolus iv} \rightarrow \text{compartment 1} \rightarrow$

 first order differential equation

 $\frac{dc}{dt} = -k_e c$

 c: plasma concentration
 k_e: elimination constant
 t: time

 integration

 $c = c_0 e^{-k_e t}$

M. Meyer pharmacokinetics
Compartment models II

- Half life for first order kinetics

\[c = c_0 e^{-k_e t} \]
\[\ln c = \ln c_0 - k_e t \cdot \ln e \]
\[\ln c = \ln c_0 - k_e t \]
\[\ln \frac{c_0}{2} = \ln c_0 - k_e t_{1/2} \]
\[\ln c_0 - \ln 2 = \ln c_0 - k_e t_{1/2} \]
\[\ln 2 = k_e t_{1/2} \]
\[t_{1/2} = \ln 2 / k_e \]
\[t_{1/2} = 0.693 / k_e \]

Compartment models III

- Zero order kinetics

elimination independent of drug concentration

\[\frac{dc}{dt} = -k_e \]

integration

\[c = c_0 - k_e t \quad \text{linear decrease of plasma concentration} \]

- Example

ethanol is approximately eliminated in a process of order zero (limited elimination capacity of alcohol dehydrogenase, \(\approx 0.1 \text{ g h}^{-1} \text{ kg}^{-1} \text{ body weight} \))

First order eliminations are much more important than zero order
Compartment models IV

- One compartment model for intravenous administration and multiple routes of elimination

[Diagram showing one compartment model with compartments 1 and 2, elimination via metabolism, urine, biliary excretion, ...]

- One compartment model for extravascular administration

[Diagram showing extravascular administration with compartments 1 and 2, and first-order processes]

Compartment models V

- Two compartment model for intravenous injection

[Diagram showing two compartment model with compartments 1 and 2, first-order processes]
Extravascular dosing

- First order absorption and excretion

\[\text{dose} \rightarrow (R) \rightarrow \text{compartment 1} \rightarrow (k_a) \rightarrow k_e \]

Bateman function

\[c = c_0 \left(e^{-k_a t} - e^{-k_e t} \right) \]

\[c_0 = f \cdot \frac{D}{V} \cdot \frac{k_a}{k_e - k_a} \]

- Influence of individual parameters on plasma concentration

\[c_0 = 40 \text{ ng/ml}, \quad k_a = 0.1 \text{ h}^{-1}, \quad k_e = 0.05 \text{ h}^{-1} \]

\[c_0 = 20 \text{ ng/ml}, \quad k_a = 0.1 \text{ h}^{-1}, \quad k_e = 0.05 \text{ h}^{-1} \]

\[c_0 = 40 \text{ ng/ml}, \quad k_a = 0.1 \text{ h}^{-1}, \quad k_e = 0.01 \text{ h}^{-1} \]
Extravascular dosing III

- Influence of individual parameters on plasma concentration

 maximum plasma concentration c_{max} increases if

 c_0 increases (i.e. dose D or bioavailability f increases)

 k_e decreases or k_a increases

 time t_{max} increases if k_a decreases

 plasma concentration $c = 0$ if $k_a \leq k_e$

 $\text{AUC}_{\text{iv}} = \text{AUC}_{\text{ev}}$ for bioavailability $f = 1$

Kinetics for multiple dosing

- Kinetics for multiple bolus iv dosing

 plasma concentration oscillates between minimum and maximum plasma concentration at steady state

- Example

 multiple iv doses with 12 h time difference, half life $t_{1/2} = 6\text{h}$, initial concentration 100 ng/ml

multiple dosing II

- Pharmacokinetic parameters for multiple dosing

 τ dose interval

 \(AUC_{\tau,ss} \) area under the curve in dosing interval \(\tau \) at steady state

 \(c_{min,ss}, c_{max,ss} \) minimum- and maximum concentration

 \(c_{trough} \) concentration at the end of a dosing interval immediately before next dose

 \(c_{av,ss} \) mean concentration \(c_{av,ss} = \frac{AUC_{\tau,ss}}{\tau} \)

 \(T_{\text{Cave}} \) time range with concentrations exceeding \(c_{av,ss} \)

 \(\text{PTF\%} \) peak-trough fluctuation \(\text{PTF\%} = 100 \cdot \frac{(c_{max,ss} - c_{min,ss})}{c_{av,ss}} \)

 \(R \) accumulation ratio estimated from single dose

Urine excretion

- Urine excretion after single iv-bolus

 \[\begin{array}{c}
 \text{bolus iv} \\
 \rightarrow \text{compartment 1} \\
 \rightarrow k_e
 \end{array} \]

 first order differential equation

 \[\frac{du}{dt} = k_e x \]

 u amount of drug in urine

 x amount of drug in plasma

 \(k_e \) rate constant of elimination

 t time

 integration

 \[u_t = u_{\infty} \left(1 - e^{-k_e t}\right) \] amount of drug excreted into urine up to time \(t \)
Urine excretion II

- Urine excretion after single iv-bolus

\[U_t = U_\infty (1 - e^{-k_t t}) \]

the amount of drug in the body is the difference between iv-dose and amount of drug in urine provided that the urine excretion is the only route of elimination.

Urine excretion III

- Pharmacokinetic parameters for urine excretion

- \(U_{t_1,t_2} \) amount of unchanged drug in urine in time interval from \(t_1 \) to \(t_2 \)
- \(c_{ur} \) urine concentration
- \(V_{ur} \) urine volume
- \(f_e \) fraction of unchanged drug in urine

M. Meyer pharmacokinetics
Statistical moments

Moments of the concentration time curve

- Intravenous application

The mean residence time of a drug can be obtained from the quotient of the first (AUMC) and zero order moment (AUC) of the plasma concentration time curve.
Mean residence time

- Mean residence time of a drug in the body

\[MRT = \frac{AUMC}{AUC} \]

\[AUMC = \int_0^\infty tC(t)dt \]

\[AUC = \int_0^\infty C(t)dt \]

Based on theory of statistical moments, not on compartment models, can be used for any type of administration.

Relation to half life for intravenous bolus injection

\[t_{1/2} = 0.693 \cdot MRT_{iv} \]

Mean residence time II

- Numerical calculation

\[MRT = \frac{AUMC}{AUC} \]

\[AUC = \int_0^\infty c(t)dt \]

\[AUMC = \int_0^\infty tc(t)dt \]

\[AUC_i = \frac{C_i(t_{i+1}) - C_i(t_i)}{2} (t_{i+1} - t_i) \]

\[AUMC_i = \frac{C_i(t_{i+1} + t_{i+1})}{2} (t_{i+1} - t_i) \]

\[AUC = \sum_{i=1}^{n-1} AUC_i \]

\[AUMC = \sum_{i=1}^{n-1} AUMC_i \]
Mean absorption time

- Mean residence and absorption times

mean absorption time MAT

$$\text{MAT} = \text{MRT}_{\text{iv}} - \text{MRT}_{\text{iv}}$$

difference between mean residence times after non-intravenous and intravenous administration of a drug solution

mean dissolution time MDT

$$\text{MDT} = \text{MAT}_{\text{tabl.}} - \text{MAT}_{\text{sol.}}$$

difference between the mean absorption times after oral administration of a drug in a tablet and in solution

Bioavailability and bioequivalence
Bioavailability

- The absolute bioavailability F is the percentage of the dose reaching the global circulation

$$F = \frac{D_{iv} \cdot AUC_{nv}}{D_{nv} \cdot AUC_{iv}} \cdot 100$$

$D =$ dose

(n)iv = (no)intravenous e.g. oral

- Relative bioavailability refers to non-iv administrations

- Bioavailability is a property of the dosage form and not a property of the drug

Bioavailability II

- Factors involved

 physicochemical factors
 solubility, pK, lipophilicity, permeability

 pharmaceutical factors
 particle size, solubilizer, density of tablet

 delivery method

 local factors
 ingestion of food, vomiting, gastric emptying disorders

 first pass effect
 metabolism of drugs taken orally in the liver prior to reaching systemic circulation
Lipinski-rule of oral bioavailability (rule of 5)

Oral absorption is unlikely if two or more of the parameters are outside of the range given below

<table>
<thead>
<tr>
<th>descriptor</th>
<th>potential problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW ≤ 500</td>
<td>poor diffusion</td>
</tr>
<tr>
<td>logP ≤ 5</td>
<td>too much lipophilicity</td>
</tr>
<tr>
<td>hydrogen bond donor atoms ≤ 5</td>
<td>too many H-bonds with membrane</td>
</tr>
<tr>
<td>hydrogen bond acceptor atoms ≤ 10</td>
<td></td>
</tr>
</tbody>
</table>

Octanol-water distribution coefficient

distribution of a compound in n-octanol / water

\[P_{ow} = \frac{c_{Oct}}{c_{aq}} \]

\[\log P_{ow} = \log \left(\frac{c_{Oct}}{c_{aq}} \right) \]

<table>
<thead>
<tr>
<th>compound</th>
<th>log (P_{ow})</th>
<th>(P_{ow})</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetamide</td>
<td>-1.155</td>
<td>0.833</td>
</tr>
<tr>
<td>methanol</td>
<td>-0.824</td>
<td>3.370</td>
</tr>
<tr>
<td>formic acid</td>
<td>-0.413</td>
<td>6.410</td>
</tr>
</tbody>
</table>

M. Meyer pharmacokinetics
Distribution coefficient II

regression model for log P calculation derived from a training set

\[\log P_{\text{OW}} = \sum n_i a_i \]

- \(n_i \) number of atoms of type i
- \(a_i \) contribution of each atom i to \(\log P_{\text{OW}} \)

<table>
<thead>
<tr>
<th>atom type</th>
<th>contr. (a_i)</th>
<th>atom type</th>
<th>contr. (a_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 aliphatic</td>
<td>0.1441</td>
<td>O2 alcohol</td>
<td>-0.2893</td>
</tr>
<tr>
<td>C8 aromatic</td>
<td>0.08452</td>
<td>H2 alcohol</td>
<td>-0.2677</td>
</tr>
<tr>
<td>H1 H bound to C</td>
<td>0.1230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lipinski rule

- Example

paracetamol
N-(4-hydroxyphenyl)acetamide

![Structure of paracetamol]

donor atoms 2
acceptor atoms 3
molecular weight 151.1
\(\log P \) (XlogP3) 0.5
Bioequivalence

- **Objective**
 equivalence of two preparations of a drug based on similarity of pharmacokinetic properties

- **Example**
 generic drug vs. original formulation
 modification of excipients

- **Parameters**
 AUC, in addition maximum plasma concentration and time to reach the maximum plasma concentration

- **Analysis**
 statistical analysis based on confidence intervals

Study design

M. Meyer pharmacokinetics
Design of PK-Studies

- **Subjects**

 frequently healthy male volunteers
 later volunteers from target populations

- **Example of plasma sampling** ($t_{1/2}$ ca. 3-4 h for i. v. dosing)

 i.v. study
 (pre-dose), 5, 10, 15, 20, 30, 45 min, 1, 1.5, 2, 4, 6, 8, 12, 24 h

 s. c. study
 (pre-Dose), 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 16, 20, 24, 30, 36, 48 h

- **Example of urine sampling**

 (pre-Dose), 0 - 4, 4 - 8 h, 8 – 12 h, 12 - 24 h

Design of bioequivalence studies

- **Study design**

 randomised cross-over study

 sequence | period 1 | wash out | period 2
 1 | test | reference | test
 2 | reference |

 alternatively parallel study for drugs with long half life

 at least 12 volunteers (> 18 years, normal lab values and health status, preferably non-smokers, no alcohol/drugs)

 standardised food / beverage intake

 often single dose sufficient
ADME

Liberation

- Physicochemical factors
 - polymorphism (different crystal forms)
 - solubility
 - local pH-value
 - particle size

- Pharmaceutical factors
 - property of dosage form, e.g. excipients
Absorption

- **Drug application**
 - topical
 - local action at location of administration, absorption often undesirable
 - systemic
 - distribution via global circulation

- **Choice of application**
 - time, duration and location of drug action, absorption, route of administration, health status of patient

- **Route of administration**
 - skin / mucous membranes e.g. oral, nasal, sublingual, pulmonary, rectal, percutaneous
 - injections e.g. intravenous, subcutaneous, intramuscular

Absorption II

- **Mechanisms**
 - passive diffusion, active transport (Influx)
 - paracellular – between cells
 - transcellular – through cells

- **pH - influence**
 - drugs with acidic or basic substituents are partially ionized or neutral (depending on pK_a-value and local pH).
 - the ionic fraction is less lipophilic and has less ability of diffusion through membranes
Distribution

- Total body water

 body water
 males: ca. 60% of body weight, ca. 40 L
 females: ca. 50% of body weight, ca. 30 L

distribution
 ca. 30-40% intracellular water
 ca. 20% extracellular water
 ca. 15% interstitial water (15 L)
 ca. 5% plasma water (3 L)

Distribution II

- Plasma proteins
 - albumins (60%), globulins, acidic glycoprotein

- Consequences
 - bound drugs cannot interact with the target
 - bound drugs cannot be metabolized or excreted
 - drug interactions possible
Distribution III

- Fraction of bound and unbound drug

\[
[W] + [P] \rightleftharpoons [WP]
\]

\[
K = \frac{[WP]}{[W][P]}
\]

\[
f_b = \frac{[WP]}{[W]_{\text{tot}}} = \frac{[WP]}{[WP] + [W]}
\]

bound fraction

\[
f_u = 1 - f_b = 1 - \frac{[WP]}{[WP] + [W]} = \frac{1}{1 + K [P]}
\]

unbound fraction

\[f_u\] increases if the binding constant \(K\) decreases and the protein concentration \([P]\) decreases.

Distribution IV

- Blood brain barrier

- stable medium
- transport of nutrients and waste
- protection of brain

reduced paracellular diffusion through tight junctions, enzymatic metabolism, active efflux-transport

transcellular diffusion of compounds with small polar surface area possible
Distribution V

- Placenta

 task
 transport of nutrients and waste elimination, otherwise transport barrier
 oxygen supply, production of hormones

 mechanisms
 transcellular diffusion, active transport, endocytosis, metabolism

 xenobiotics may possibly overcome the placenta barrier
 indirect treatment of fetus by treatment of mother

 factors involved
 gradient of concentrations, protein binding, molecular weight, lipophilicity

Distribution VI

- Enterohepatic circle
 circulation of (metabolised) drugs between liver and gut
 with re-absorption after excretion via bile

 consequences
 fluctuation of plasma levels, extension of residence time
 unexpected plasma levels after swallowing sublingual tablets
Elimination

- **Processes**
 - metabolism – biochemical modification
 - excretion – elimination of drug or metabolites from organism

- **Routes of excretion**
 - renal - excretion via kidney to the urine
 - main route for MW < 300
 - biliary / intestinal – via bile / gut (re-absorption possible)
 - main route for MW > 500
 - lung – anesthetics
 - mother’s milk pH = 6.6, blood pH 7.4 => \(pK_a \)-dependent of distribution
 - respiration, saliva

Metabolism

- **Relevance**
 - reduction of drug concentration, formation of metabolites with different efficacy / toxicity profile, activation of prodrugs
 - especially in the liver and intestinal mucosa, but also in lung and blood
 - first-pass effect after oral administration
 - metabolism of drug in liver or gut
 - reduction of systemic availability

- **Metabolic reactions**
 - Phase I – modification e. g. oxidation, reduction, hydrolysis
 - Phase II – conjugation e. g. glucuronidation, sulfonation, acetylation
Metabolism II

- Examples of metabolic reactions

modification

oxidation of aromatic and aliphatic compounds

\[
\text{Ph} \rightarrow \text{Ph}^\text{+}
\]

reduction of aldehydes / ketones

\[
\text{R}^\text{CH}=O \rightarrow \text{R}^\text{CH} \rightarrow \text{R}^\text{CH}_2\text{OH} \rightarrow \text{R}^\text{CH}_2\text{H} \rightarrow \text{R}^\text{H}
\]

hydrolysis of esters and amides

\[
\text{R}^\text{O}^\text{R} \overset{\text{H}_2\text{O}}{\longrightarrow} \text{R} ^\text{OH} \hspace{1cm} \text{R}^\text{N} \overset{\text{H}_2\text{O}}{\longrightarrow} \text{R}^\text{NH}_2 \hspace{1cm} \text{R}^\text{OH}
\]

Metabolism III

- Examples of enzymes catalysing modifications

oxidoreductases

- cytochrome P450 (CYP)
- flavin-dependent monooxygenases (FMO)
- monoamineoxidases (MAO)
- cyclooxigenases (COX)
- alcohol dehydrogenase (ADH)
- aldehyde dehydrogenase (ALDH)

hydrolases

- esterases
- amidases
Metabolism IV

- Cytochrome P450 (CYP)

monooxygenases catalysing the general reaction

\[R-H + O_2 + NADPH + H^+ \rightarrow R-OH + H_2O + NADP^+ \]

occurrence

\(\approx 60 \) different cytochromes P450, especially in the liver

relevance

involved in the metabolism of many drugs

CYP3A4 (\(\approx 50\% \)), CYP2D6 (\(\approx 30\% \)), CYP2C9 und CYP2C19 (\(\approx 10\% \))

consequences

drugs may be substrates, inhibitors or inducers

possibility of drug interactions

variability of metabolism caused by genetic variability of cytochromes (e. g. CYP2D6,CYP2C19)

Metabolism V

- Examples of metabolic reactions

conjugation reactions

- glucuronidation catalysed by glucuronyltransferases

- transfer of a sulfo-group by sulfotransferases \(R - O - SO_3^- \)

- acetylation by N-acetyltransferases

References