
Cryptographic Hash Functions

Recent Results on Cryptanalysis and their
Implications on System Security

Rüdiger Weis1 and Stefan Lucks2

1 Technical University of Applied Sciences Berlin
2 University of Mannheim

Abstract. Recently, several severe attacks against cryptographic hash
functions where discovered. This includes attacks against MD4 and MD5,
two rather old hash functions. Very unfortunately, MD5 is still widely
used in practice in many software integrity schemes, including, but not
limited to the most popular Linux packet formats. This may pose a
serious security problem. In this paper we discuss the current state of
research on hash functions and some first-aid workarounds. We briefely
discuss the trouble “Trusted” Computting has got into, by trusting the
SHA-1 hash function which now has been broken.

A spectre is haunting IT-security – the spectre of hash function
cryptanalysis. Hash functions, the cryptographic workhorses for data
authenticity and integrity, are broken one by one. There are three
kinds of attacks:

– structural weaknesses,
– analytical weaknesses, and
– exploits of both.

In the current paper, we briefly explain how current hash func-
tions work, which attacks cryptographic hash functions should de-
fend against, and what had gone wrong now (Section 1). More specif-
ically, we describe how to exploit the currently known weaknesses,
and discuss their practical consequences (Section 2), including the
trouble for “Trusted” Computing, due to the “hardwired” use of
SHA-1, and the risks of still using MD5 (3). We further describe the
immediate consequences for the “users” of hash functions (Section 4)
and an outlook on future development (Section 5). Finally, we give
a short summary (Section 6).

1 Hash Functions and Attacks

A cryptographic hash function H : {0, 1}∗ → {0, 1}n maps an infinite
set of inputs to the finite set of n-bit hash values. Informally, a
real hash function H should behave like an ideal one (i.e., like a
random oracle). This would not be useful for a formal definition,
though. Instead, one considers somewhat simpler security goals for
H : {0, 1}∗ → {0, 1}n.

While collisions (inputs X 6= Y with H(X) = H(Y)) necessar-
ily exist, as there are more inputs than outputs, a hash function
should be collision resistant : given H, it should be infeasible for an
adversary to actually find any collisions.

Additionally, a hash function should resist preimage and 2nd
preimage attacks: Given Z, it should be infeasible for an adversary
to find any X with H(X) = Z, and given Y , it should be infeasible
to find Y with H(X) = H(Y).

Classes of Attacks

A bit more formally, we distinguish the following classes of attacks:

Collision attack: Find two messages M 6= M ′ with H(M) = H(M ′).
Preimage attack: Given a random value Y ∈ {0, 1}n, find a mes-

sage M with H(M) = Y .
2nd preimage attack: Given a message M , find a message M ′ 6=

M with H(M) = H(M ′).
K-collision attack for K ≥ 2: Find K different messages M i, with

H(M 1) = · · · = H(MK).
K-way (2nd) preimage attack for K ≥ 1: Given Y (or M with

H(M) = Y), find K different messages M i, with H(M i) = Y
(and M i 6= M).

The last two are natural generalisations of the more ‘traditional”
collision attacks (2-collisions) and ‘1-way” preimage and 2nd preim-
age attacks. We compare the resistance of a given hash function
against these attacks with the resistance a random oracle would pro-
vide:

Fact: Model H : {0, 1}∗ → {0, 1}n as a random oracle. Finding a
K-collision for H takes time ≈ 2(K−1)·n/K , and finding a K-way
preimage or a K-way 2nd preimage for H takes time ≈ K · 2n.

2

Special case: Finding a “normal” (2-)collision for a random oracle
H takes time ≈ 2n/2 and finding a preimage or a 2nd preimage
takes time ≈ 22n.

1.1 Hash Functions and Digital Signatures

Why is it so important for a hash function to be 2nd preimage re-
sistant and even collision resistant? Why is it so dangerous if a hash
function does not defend against finding 2nd preimages or collisions?

As a motivating example, consider digital signature schemes. A
message M has to be signed. The signature scheme is broken, if the
adversary can forge a signature for another message M ′. In practise,
cryptographic signature schemes follow the hash-and-sign paradigm:
Instead of signing the (potentially very long) message M , one actu-
ally computes a short “fingerprint” H(M) and signs X.

Given a signature for some message M , and adversary able to
compute a 2nd preimage M ′ with H(M) = H(M ′) is able to forge a
signature for M ′, as the signature for M is valid as well for M ′.

So much about the importance of 2nd preimage resistance. But
why is collision resistance a big deal?

2nd preimage resistance is fine – if we always trust the party
who chooses the message M to be signed. But if we don’t, we need
collision resistance! Otherwise, the adversary could compute the col-
lision M 6= M ′, sign M or present M to be signed, and later claim
the signature on M ′.

1.2 Structural Weaknesses of Today’s Hash Functions

The design of today’s cryptographic hash functions, including but
not limited to MD4, MD5, SHA-0, SHA-1, SHA-2 family, RIPEMD,
RIPEMD-160, Whirlpool, Tiger, . . . ubiquitously follows the MD
structure by Merkle and Damg̊ard (MD) [19, 5] for hash functions.

As a hash function H : {0, 1}∗ → {0, 1}n has to handle arbitrarily
long inputs1, the idea is to design an internal compression function
C : {0, 1}n×{0, 1}m → {0, 1}n with fixed input size, to split the given
message M into m-bit blocks M [1], . . . , M [L] (with some padding in

1 In practise, the input size of of all these hash function is limited to some fixed upper
bound. As this bound is at least 264 bit, this is hardly a practical limitation.

3

the final block M [L]), and to compute the hash by straightforwardly
iterating the compression C, as shown in Figure 1.

H[0] H[1] H[2]

M[2]M[1]

CC
H[L]H[L−1]

M[L]

C

Fig. 1. The iterated Merkle-Damg̊ard (MD) structure for hash functions

As shown in [19, 5], the hash function h is collision resistant,
if the compression function is. This is the strong point of the MD
structure.

Unfortunately, there is a weak point, as well: the MD structure
is rather failure-unfriendly – if computing a compression function
collision is somehow feasible, all the bets are off. In fact, it had
turned out that these hash functions failed worse than expected.

Length Extension Attacks

The length extension property is a well-known generic weakness of
the MD hash (see e.g. [8, Section 6.3.1]):
Given

H = H(M),

it is straightforward to compute M ′ and H ′, such that

H ′ = H(M ||M ′)

– even for unknown M . (For the correct padding of the final message
block, one needs to know the length of M .)

2nd Collision Attacks

Once you have found a collision, it is trivial to produce more such
collisions:
If

H(M) = H(N)

for any two messages M , N , then

H(M ||S) = H(N ||S)

for all S ∈ {0, 1}n.

4

Multiple Collisions

Finding multiple collisions should be way more expensive than find-
ing plain (2-)collisions – but Joux [15] disproved this for the MD
design. He described a generic attack to find 2k-Collisions for a MD
hash H in time ≈ k · 2n/2, instead of Ω(2n(2k

−1)/2k

):
For i in 1 . . . , k:

→ Find a local collision M 0
i 6= M1

i with

Hi = C(Hi−1,M
0
i) = C(Hi−1,M

1
i).

All the 2k messages

(M0
1 , . . . ,M 0

k), (M 0
1 , . . . ,M 0

k−1,M
1
k), . . . , (M 1

1 , . . . ,M 1
k)

hash to the same value Hk. (Note that all messages are of the same
(not too large) size of k blocks.)

Using Joux’ multicollision attack as a tool

As Joux pointed out [15], the adversary’s ability to find large K-
collisions opens the door for further attacks. Below, we sketchily
describe them.

Attacking cascaded hash functions.

Let a hash H : {0, 1}∗ → {0, 1}n be defined as

H(M) = H1(M)||H2(M)

with two independent n-bit hashes H1 and H2.
If both H1 and H2 are independently defined as random oracles,

then finding collisions for H takes time 2n.
If, however, either is constructed as a MD hash, finding a collision

for H only takes time
≈ (n/2) ∗ 2n/2.

W.l.o.g., let H1 be the MD hash:

→ Find 2(n/2)-collisions for H1 (in (n/2) ∗ 2n/2 units of time). Sta-
tistically, one such collision also collides for H2 (and thus for H).

5

Finding multiple (2nd) preimages.

Given a target Y ∈ {0, 1}n, the attack proceeds as follows:

→ Generate 2k colliding k-block messages M 1, . . . , M 2k

with

Hk = H(M 1) = · · · = H(M 2k

).

→ Find a message chunk Mk+1, such that C(Hk,Mk+1) = Y .

This provides a 2k-way preimage. The first step takes time k ∗ 2n/2,
which is marginal, compared to the second step. This takes about
the time for a single preimage attack, i.e., ≈ 2n. For a 2nd preimage
message attack with the target message M , just set Y := H(M).

More Structural Weaknesses

Our list of structural weaknesses is not at all complete – other attacks
have been described, e.g., by Kelsey and Schneier [23] and Kelsey and
Kohno [21].

1.3 Analytical Attacks

The design of cryptographic primitive operations, such as a hash
function, depends on both art and science. Studying the internal
structure of a hash function is science. Finding a good design for the
main building block – namely the compression function – is more art
than science. Some would say, it is like black magic.

If a compression function of a hash function is as strong as it
should be, attacks such as Joux’ would need more than 2n/2 units
of time – impractical for large n (e.g., n > 160 for today; perhaps
n > 200 for the next 25 years). Thus, for sufficiently large n the
attacks would be entirely theoretical – as would the exploits, we
describe below.

As it turns out, however, the designers of modern hash functions
have not been such good “black magicians” as they have hoped for. A
variety of analytical attacks against hash functions – i.e., of attacks
against the compression functions – have been found recently [34–
38, 41, 3]. As finding collisions is the “simplest” task for the attacker,
most of these attacks are collision attacks, but even 2nd preimage
attacks have been presented [41].

6

SHA-1 is probably the cryptographic hash function with the
largest usage base – at least in the context of digital signatures. Un-
til early 2005, no attacks against SHA-1 have been known (though
some attacks against weakened variants of SHA-1 have been stud-
ied). In February 2005, however, another breakthrough in the analy-
sis of hash functions has been announced: A collision attack against
SHA-1.

There was no need to panic, yet: with its expected running time
of 269 hash operations, the attack would only be feasible for an ex-
tremely well-funded and highly motivated adversary. The entire at-
tack has been published in August 2005 [37]. At the same conference,
an improved collision attack with an expected running time of 263

hash operations has been claimed [38]. If this attack is confirmed,
this would be very bad news for anyone still using SHA-1: finding
collisions for SHA-1 would be within the practical range for a dis-
tributed parallel collision search.

2 Exploits – how Practical are Collision
Attacks?

With very few exceptions – namely for attacking MD4 – the attacks
against hash functions are restricted to finding collisions, and these
collisions are more or less random. For cryptographers, these results
are exciting - but many so-called ”practitioners” turned them down
as practically irrelevant. The attacks seem to lack two important
qualities

– They only find collisions, i.e., the algorithm produces two mes-
sages M and M ′ with H(M) = H(M ′). Practical attack scenarios
would seem to require 2nd preimages, i.e., the algorithm receives
M as its input and produces M ′ with H(M) = H(M ′).

– The adversary has no control over M and M ′ – with overwhelm-
ing probability both M and M ′ look like random garbage. As
it may appear, typical attack scenarios assume the adversary to
find a meaningful message M ′ for a given (harmless) message M .
2

2 E.g., consider a document M . being digitally signed by someone. A 2nd preimage
attacker may replace M by M ′. If the hash function H is used in the signature

7

As you cannot exercise control over colliding messages M and
M ′, these collisions are theoretically interesting but harmless, right?
In the past year, we have met quite a few people who indeed thought
so. We argue, however, that this believe is dangerously wrong!

2.1 Making the Attack Practical

In practise, all collision finding algorithms

– can take an initial value H[0] as their input

and then compute two colliding messages M and M ′ with the fol-
lowing two properties:

– M and M ′ are both of the same length, and
– M and M ′ are short (e.g., 1024 bit).

Now the Merkle/Damg̊ard construction for hash functions, see
Figure 1, allows us to easily construct longer messages (S||M ||T)
and (S||M ′||T) which also collide. Assume S to consist of i blocks
S[1], . . . , S[i]. Compute the intermediate hash H[i]. Now call the
collision finding algorithm, using H[i] as its input, instead of the
original initial value H[0]. The result are two (partial) messages M
and M ′. By the properties of the Merkle/Damg̊ard construction, we
now have

H(S||M) = H(S||M ′).

For any postfix T , we further get

H(S||M ||T) = H(S||M ′||T).

So, this is the order of doing things:

1. Choose the prefix S, and compute the input H[i] for the collision
finding algorithm.

2. Ask the collision finding algorithm for M and M ′.
3. Choose the postfix T .

scheme and H(M) = H(M ′), the signature for M would as well be valid for M ′, i.e.,
we did forge a signature for M ′. To benefit from the forgery, however, the attacker
would likely need a meaningful M ′, instead of a random sequence of bits.

8

How can this be useful for the attacker?
Consider writing some executable. The prefix S ends with some

forward-jump into T . The postfix T references some constants, which
are conveniently located at the address positions where M or M ′ are
stored. Accordingly, the executable (S||M ||T) may behave entirely
different from its hash collision (S||M ′||T) – and when writing T , its
author already knows M and M ′ and can completely determine what
the executables are doing. E.g., running (S||M ||T) may serve some
reasonable purpose for you, while running (S||M ′||T) may open a
back door to your the system.

2.2 Known Exploits

Early after the first collisions for MD5 have been found, Kaminski
[16] and Mikle [20] played games with executables. Mikle’s executa-
bles were self-extracting archives, extracting different stuff. One of
Kaminski’s executables was harmless, while the other one harmfully
opened a backdoor.

Lenstra, Wang and de Weger [17, 18] where the first to demon-
strate a similar trick with non-executables: they constructed colliding
X.509 certificates.

Later, Daum and Lucks demonstrated colliding MD5 PostScript
documents [6], using the PostScript if-then-else construct. Similar
attacks are even possible for documents description languages with-
out if-then-else, such as PDF or TIFF. This has been shown by
Gebhardt, Illies, and Schindler [9, 10], who played tricks with colour
tables and similar document-information.

Thus, the weaknesses of the MD hash function structure
allows to turn the ability of finding “random” collisions into
very well-targeted and meaningful collisions.

2.3 MC Fuzzing

The ability of generating big amounts of colliding messages can be
used as a powerful tool to mount Fuzzing Attacks. The main idea
of Fuzzing is to test applications by sending random data. This had
a long history in software testing but is also in use in automated
attacking tools.

9

An attacker could get a signature for a harmless packet having
huge amounts of ’signed’ random packets ready for a Fuzzing test.

3 Practical Schemes in Trouble

As should have become clear from the above, given the current attack
algorithms it would be easy to generate, e.g., two “meaningful” boot
images which collide, i.e., have the same hash value. Also, it would be
infeasible. to distinguish malicious packets containing random data
from packets which are used, e.g., in a cryptographic context (i.e.,
are encrypted).

3.1 SHA-1 collisions and “Trusted” Computing?

The central building block of the Trusted Computing Group pro-
posals is the so called Trusted Platform Module (TPM) (dubbed as
”Fritz” Chip). This is a bit like a smartcard being hardwired into
a computer. Future implementations may even integrate the TPM
into the main processor (see also Intel LaGrande).

Ignoring warnings in the past few years (e.g. [39, 40]) the TPM
is using SHA-1 for allmost all operations. In other words, SHA-1 is
“hardwired” into the current “Trusted” Computing Standards. As
it seems, the authors of the “Trusted” Computing standards did
unconditionally trust into the security of the SHA-1 hash function.
Has it been impossbile for them to even imagine that that SHA-1
could be broken?

In any case, after the first cryptanalytic resuls on the full SHA-1,
and also due to the general weaknesses of the MD structure, the con-
sequences for “Trusted” Computing can be severe – several security-
critical building blocks appear to be compromised, namely:

– integrity measurements (using SHA-1),
– digital signatures (using SHA-1), and
– PKIs (using SHA-1).

A huge practical problem is also the use of SHA-1 for “Trusted”
secure booting. Since the generation of SHA-1 collision is practi-
cally feasible, checking the boot sequence can not avoid ’Evil Twins
Attacks’.

10

A remedy would be to replace SHA-1 by another (hopefully se-
cure) hash function. The standards would have to be rewritten, all
the TPMs out there today would become obsolete, . . . at the end,
such a change would certainly be possible, but quite costly, both
for the TCG and for its customers, the early adopters of “Trusted”
Computing.

3.2 MD5 is still widely used

Even today (April 2006) many applications and packet format con-
tinue to use MD5 for security-critical authenticity and integrity mech-
anisms. This gives the authors of the current paper the creeps. We
found MD5 being used in, e.g.,

– the Debian Packet Format

– the RPM Packet Format

– Open BSD

– mySQL

– old PGP Keys

– CD checksums

– . . .

Recent results on the analysis of MD5 reduce the effort to find
collisions to a few minutes on an old notebook. Thus, collision and
multi-collision attacks on MD5 are feasible and practical. As dis-
cussed earlier the ability to produce multiple colliding messages with
a negligible effort can be used to generate Fuzzing packets.

Hotfix Security improvements

Some packet formats sign the a MD5 list of files using gpg (Figure 2).
This technique does neither help against MD5 nor SHA collisions.
It would be a big security improvement to sign the whole packet
(including the MD5 list, if necessary). Our recommendation:

– Migrate directly from MD5 to SHA-2.

– Add SHA-2 hashes to existing MD5 lists.

11

Fig. 2. MD5 signed with gpg using SHA-1

Fig. 3. OpenBSD MD5 checksums

12

4 What should be done?

From a cryptographer’s standpoint, SHA-1 should be replaced as
soon as possible.

4.1 Restrict the Life-Time of Algorithm Certificates

In the context of the German Signature law (similar laws exist in
other European countries), cryptographic algorithms, including hash
functions, need an official certification. Usually, this is granted for
a six-year period. As the current state of knowledge about hash
functions is so much at flux, the period should be much shorter, no
more than three years.

4.2 Don’t use MD4 and MD5 any more!

In the context of digital signatures, the usage of MD5 (or, even
worse, MD4) can no longer be justified. As William Burr from the
us-american National Institute of Standards and Technology (NIST)
pointed out in February 2005:

”If by some chance you are still using MD5 in certificates or
for digital signatures, you should stop.” [29]

It may even be prudent to re-consider the validity of older MD5-
based (or MD4-based) digital signatures, if these have not already
been re-signed using a more up-to-date hash function. Even in secu-
rity contexts without digital signatures, the usage of MD4 and MD5
should be avoided.

4.3 Migrate away from SHA-1, soon!

Currently, exploiting the SHA-1 attacks would only be feasible for
well-funded and motivated adversaries. There is no need to panic,
but there are extremely good good reasons for migration to other
hash functions soon, wherever possible.

As finding collisions for SHA-1 seems to be within practical range,
the usage of SHA-1 for new digital signatures should be stopped as
soon as possible. As we will explain below, some alternative choices

13

exist. In contrast to MD4/MD5, the security of signatures already
generated does not need to be questioned – assuming no want-to-be
forgers new details of the attack before the public did know.

Note that the news about SHA-1 pose problems for the Trusted
Computing Group (TCG), with its specifications for a “trusted com-
puting platform”, because the current specifications (including the
recent version 1.2) do not allow an alternative to SHA-1.

4.4 Use Available Alternatives : SHA-2 and RIPEMD-160

The recent NIST-standard SHA-2 [28] defines several functions with
an extended hash size from 224 bit (SHA-224) to 512 bit (SHA-512).
Unfortunately, the security of these functions have not been studied
much, except for [11], who provided the following results:

– The good news: The SHA-2 hash functions are quite resistant
against attack techniques which have been used to attack MD4,
MD5, and SHA-1.

– The bad news: The design of SHA-2 is fragile: even marginal
modifications of the hash functions turned out to generate major
weaknesses.

The SHA-2 functions are a possible short term alternative to
SHA-1. No attack against the un-modified SHA-2 functions have
been found, so far. Another alternative is the European hash function
RIPEMD-160 [7]. As with SHA-2, no attack against RIPEMD-160
is known.

Note that both the SHA-2 family and RIPEMD-160 follow the
MD design and, accordingly, suffer from its structural weaknesses.

SHA-2 Drop-In-Replacement

Considering the actual (April 2006) cryptanalytic analyses using
160 bit from SHA-2 output as drop-in replacement for SHA-1 seems
to provide a security improvement.

4.5 Randomised Hash

One apparent option to fix the problem with the lack of collision
resistance of a hash function H is to randomise the message:

14

→ Choose a random string R (of some pre-determined length),
→ Use (R,H(R||M)) as the randomised hash output.3

The rationale is that it should be harder to find M , M ′ such that

H(R||M) = H(R||M ′)

for random R with some significant probability, than to find M , M ′

with
H(M) = H(M ′)

– assuming the choice of the random string R is outside the scope
of the attacker.

This tweak may actually be useful for some applications, but
entirely useless for others: If the party choosing R would not benefit
from a collision, but others would, randomised hashing can help. But
if the party who chooses R would benefit from a collision, randomised
hashing does not provide any defence.

5 What is in Store for the Future?

5.1 Medium Term Alternatives

As we mentioned above, RIPEMD-160 and the SHA-2 hash functions
also are members of the MD4 family of hash functions. The predeces-
sor RIPEMD (no “-number”) of RIPEMD-160 has also been broken
recently [34].

Thus, it seems better to avoid the MD4 family altogether ([31,
32]), and even modify the Merkle-Damg̊ard design principle [24–26].

Unfortunately, the ideas behind MD4 have been so influential
that all practical hash functions known today have followed them.
Hardly any expert did bother to propose or analyse the security of
alternative designs. Thus we do not recommend any non-descendant
of MD4 for immediate use.

Tiger [1] and Whirlpool [2] are two alternative hash functions.
Unfortunately, they also follow the MD construction and thus suf-
fer from the abovely described structural weaknesses. But at least,
Tiger and Whirlpool employ compression functions very different

3 E.g., a signature application would sign (R, H(R||M)) instead of H(M).

15

from those used in the MD4 family. Thus, one may hope that Tiger
and Whirlpool escape from the analytical attacks which so many of
the hash functions from the MD4 family are vulnerable against.

As, the security of Tiger and Whirlpool have hardly been anal-
ysed by anyone, our advice is not to use them now. But as Tiger
and Whirlpool have started to receive a lot of attention, they might
become decent alternatives to RIPEMD-160 and the SHA-2 family
in a few years.

As far as we know, there are no published analytical results on
Whirlpool so far. A first and still preliminary attack on Tiger has
been published recently [22], raising some questions about the secu-
rity of Tiger. But note that [22] did only break a weakened version
of Tiger – the security of the full Tiger still remains open.

5.2 In the Long Term – Searching for a Solution

To summarise: the current state of available secure cryptographic
hash functions is poor, if not lousy. The hash functions in practical
usage have been broken, the unbroken short term alternatives are
rather similar to the broken hash functions, and some still unstudied
proposals are waiting to attract the attention of cryptanalysts.

Clearly, cryptographers must improve the state of analysing and
developing secure hash functions. Two obvious goals for the science
of cryptography are

– to analyse the remaining hash functions, and

– to study new structures as potential alternatives to the MD struc-
ture (as done, e.g., in [24, 25, 4, 26, 14]).

This would be a preparation for a long term remedy, such as,
e.g., a public competition for the design and analysis of new hash
functions, similar to the AES competition for block ciphers which
ended in standardising one of the block cipher candidates as the
“Advanced Encryption Standard” (AES). Such a competition would
necessarily take a few years. Until then, one should use the short and
mid term alternatives we described.

16

6 Summary – What does that mean for YOU?

From a “user’s point of view” (the “users” of a hash function are sys-
tem architects, developers, system administrators, . . .), the current
situation is extremely unsatisfactory: The current state of cryptogra-
phy does not provide trustworthy and secure hash functions “users”
actually need! It will take quite a few years before this situation is
likely to improve (assuming it will improve at all). Accordingly, you
should

1. be aware of the fragility of current hash functions (e.g. [12]),
2. avoid the usage of hash cryptographic hash functions, when other

options are available4, and
3. wherever you need to use hash functions, keep an eye on the con-

tinuing process of discovering vulnerabilities (attacks) and de-
veloping new hash functions. Be prepared to change the hash
function you are using!

Conclusion

Cryptographic hash functions are a valuable tool to ensure the in-
tegrity and authenticity of executables, libraries, software packages,
. . . – but if a hash functions does not satisfy its security goal of being
collision resistant, security is at risk, not just theoretically, but in a
very practical sense.

All hash function based mechanisms to detect the
manipulation of software must be considered insecure if

the hash function is broken!

Specifically, we find the fact that the broken hash function MD5 is
still widely used to defend software against manipulatins more than
alarming! Namely, the Free Sofware community should act now. Our
recommendation:

Wherever MD5 is still used to detect the manipulation of
data or software, it must be replaced urgently!

This paper suggests some alternatives to MD5 and other broken hash
functions.
4 E.g., for message authentication, cryptography provides hash function based so-

lutions such as the HMAC [13], and block cipher based solutions, such as the
OMAC/CMAC [30].

17

References

1. R. Anderson, E. Biham. Tiger: A Fast New Hash Function. Fast Software
Encryption, FSE’96, LNCS 1039, Springer-Verlag, 1996.

2. P. Barreto, V. Rijmen, The Whirlpool Hashing Function, First open NESSIE
Workshop, Leuven, Belgium, 13-14 November 2000.

3. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, W. Jalby. Collisions
of SHA-0 and reduced SHA-1. Eurocrypt 2005, LNCS 3494, 36–57.

4. J. Coron, Y. Dodis, C. Malinaud, P. Punyia. Merkle-Damg̊ard revisited: how
to construct a hash function. Crypto 2005.

5. I. Damg̊ard. A design principle for hash functions. Crypto 89, LNCS 435,
416–427.

6. M. Daum, S. Lucks. The story of Alice and her boss. Presentation at rump
session of Eurocrypt 05.
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

7. H. Dobbertin, A. Bosselaers, B. Preneel. RIPEMD-160, a strengthened ver-
sion of RIPEMD. Fast Software Encryption 1996, LNCS 1039, pp. 71-82.

8. N. Ferguson, B. Schneier. Practical Cryptography. Wiley Publishing, 2003.

9. M. Gebhardt, G. Illies, W. Schindler. Reusable hash collisions for special file
formats, presentation at Rump session of Crypto.

10. M. Gebhardt, G. Illies, W. Schindler. A note on the pracitcal value of single
hash collisions for special file formats. Jana Dittmann (ed.), proceedings of
Sicherheit 2006, Lecture Notes in Informatics LNI Volume P-77, ISBN 3-
88579-171-4, ISSN 1617-5486.

11. H. Gilbert, H. Handschuh. Security Analysis of SHA-256 and Sisters. Selected
Areas in Cryptography (SAC ’03), LNCS 3006, pp. 175-193.

12. The Hashing Function Lounge.
http://paginas.terra.com.br/informatica/paulobarreto/hflounge.html

13. The HMAC Papers. http://www-cse.ucsd.edu/ mihir/papers/hmac.html

14. S. Hirose. Some Plausible Constructions of Double-Block-Length Hash Func-
tions. FSE 2006.

15. A. Joux. Multicollisions in iterated hash functions, application to cascaded
constructions. Crypto 04, LNCS 3152, pp. 306-316.

16. D. Kaminski. MD5 to be considered harmful someday. Dec. 2004.
http://www.doxpara.com/md5 someday.pdf

17. A. Lenstra, B. de Weger. On the possibility of constructing meaningful hash
collisions for public keys. ACISP 2005.

18. A. Lenstra, B. de Weger, X. Wang. Colliding X.509 certificates. Cryptology
eprint archive report 2005/067.
http://eprint.iacr.org/2005/067/

19. R. Merkle. One-way hash functions and DES. Crypto 89, LNCS 435, 428–446.

20. O. Mikle. Practical attacks on digital signatures using MD5 message digest.
Cryptology eprint archive report 2004/356.
http://eprint.iacr.org/2004/356/

21. J. Kelsey, T. Kohno. Herding Hash Functions and the Nostradamus Attack.
Eurocrypt 2006.

22. J. Kelsey, S. Lucks. Collisions and Near-Collisions for Reduced-Round Tiger.
Fast Software Encryption (FSE) 2006.

18

23. J. Kelsey, B. Schneier. Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work. Eurocrypt 2005.

24. S. Lucks. Design Principles for Iterated Hash Functions. Cryptology ePrint
Archive: Report 2004/253.

25. S. Lucks. A Failure-Friendly Design Principle for Hash Functions. Asiacrypt
2005.

26. M. Nandi, W. Lee, K. Sakurai, S. Lee. Security analysis of a 2/3-rate double
length compression function in the black box model. FSE 2005, LNCS 3557,
243–254.

27. National Institute of Standards and Technology (NIST), FIPS180-1, SE-
CURE HASH STANDARD,

28. NIST, ”FIPS 180-2: Secure Hash Standard (SHS)”, August 2002 (change
notice: February 2004).

29. F. Olsen. NIST moves to stronger hashing, Federal Computer Week, Feb. 7,
2005.

30. The OMAC page. http://crypt.cis.ibaraki.ac.jp/omac/omac.html
31. R. Weis. Cryptographic Protocols and Algorithms for Distributed Multime-

dia Systems, PhD Thesis, University of Mannheim, 2000.
32. R. Weis. Hash Problems, CCC Datenschleuder, 2005.
33. R. Weis, S. Lucks. Hash Funktionen gebrochen,. Datenschutz und Daten-

sicherheit, Dud 2005.
34. X. Wang, X. Lai, D. Feng, H. Cheng, X. Yu. Cryptoanalyisis of the hash

functions MD4 and RIPEMD. Eurocrypt 2005, LNCS 3494, 1–18.
35. X. Wang, H. Yu. How to break MD5 and other hash functions. Eurocrypt

2005, LNCS 3494, 19–35.
36. X. Wang, H. Yu, Y. L. Yin. Efficient collision search attacks on SHA0. Crypto

2005.
37. X. Wang, Y. L. Yin, H. Yu. Finding collisions in the full SHA1. Crypto 2005.
38. X. Wang, A. Yao, F. Yao. New Collision Search for SHA-1. Presentation at

rump session of Crypto 2005 (communicated by A. Shamir).
39. R. Weis, A. Bogk. TCPA - resistance is futile?, Chaos Communication

Congress, Berlin, 2002.
40. R. Weis, S. Lucks, A. Bogk. TCG 1.2 - fair play with the ’Fritz’ chip?,

SANE2004, Amsterdam 2004.
41. H. Yu, G. Wang, G. Zhang, X. Wang. The Second-Preimage Attack on MD4.

CANS 2005.

19

