
The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Coding Styles for Python

Prof. Dr. Rüdiger Weis

TFH Berlin

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

1 The Zen of Python

2 Style Guide for Python Code

3 Whitespace in Expressions and Statements

4 Naming Conventions

5 References

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

The Zen of Python

Python 2.4.2 (#2, Sep 30 2005, 21:19:01)

[GCC 4.0.2 20050808 (prerelease) (Ubuntu 4.0.1-4ubuntu8)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

The Zen of Python (II)

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let’s do more of those!

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Style Guide for Python Code

http://www.python.org/dev/peps/pep-0008/

PEP: 8

Title: Style Guide for Python Code

Version: 43264

Last-Modified: 2006-03-23 21:13:19 +0100 (Thu, 23 Mar 2006)

Author: Guido van Rossum <guido at python.org>,

Barry Warsaw <barry at python.org>

Status: Active

Type: Informational

Created: 05-Jul-2001

Post-History: 05-Jul-2001

This document gives coding conventions for the Python code

comprising the standard library in the main Python distribution.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

http://www.python.org/dev/peps/pep-0008/

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Readability counts

Readability counts

”One of Guido’s key insights is that code is read much more often
than it is written.”

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Code Lay-out

Use 4 spaces per indentation level.

Never mix tabs and spaces.

Limit all lines to a maximum of 79 characters.

For flowing long blocks of text (docstrings or comments),
limiting the length to 72 characters is recommended.

Code in the core Python distribution should aways use the
ASCII or Latin-1 encoding (a.k.a. ISO-8859-1).

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Blank Lines

Separate top-level function and class definitions with two
blank lines.

Method definitions inside a class are separated by a single
blank line. Extra blank lines may be used (sparingly) to
separate groups of related functions.

Blank lines may be omitted between a bunch of related
one-liners (e.g. a set of dummy implementations).

Use blank lines in functions, sparingly, to indicate logical
sections.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Imports

Imports should usually be on separate lines

Imports are always put at the top of the file, just after any
module comments and docstrings, and before module globals
and constants.

Imports should be grouped in the following order:
1 standard library imports
2 related third party imports
3 local application/library specific imports

You should put a blank line between each group of imports.

Always use the absolute package path for all imports.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements

Avoid extraneous whitespace in the following situations:

Immediately inside parentheses, brackets or braces.

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

Immediately before a comma, semicolon, or colon:

Yes: if x == 4: print x, y; x, y = y, x
No: if x == 4 : print x , y ; x , y = y , x

Immediately before the open parenthesis that starts the
argument list of a function call:

Yes: spam(1)
No: spam (1)

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements (II)

Avoid extraneous whitespace in the following situations:

Immediately before the open parenthesis that starts an
indexing or slicing:

Yes: dict[’key’] = list[index]
No: dict [’key’] = list [index]

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements (III)

Avoid extraneous whitespace in the following situations:

More than one space around an assignment (or other)
operator to align it with another.

Yes:
x = 1
y = 2
long_variable = 3

No:
x = 1
y = 2
long_variable = 3

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements (IV)

Always surround these binary operators with a single space on
either side:

assignment (=),
augmented assignment (+ =,− = etc.),
comparisons
(==, <,>, ! =, <>,<=, >=, in, not in, is, is not),
Booleans (and, or, not).

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements (V)

Use spaces around arithmetic operators:

Yes:
i = i + 1
submitted += 1
x = x * 2 - 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)

No:
i=i+1
submitted +=1
x = x*2 - 1
hypot2 = x*x + y*y
c = (a+b) * (a-b)

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements (VI)

Don’t use spaces around the ’=’ sign when used to indicate a
keyword argument or a default parameter value.

Yes:
def complex(real, imag=0.0):

return magic(r=real, i=imag)

No:
def complex(real, imag = 0.0):

return magic(r = real, i = imag)

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements (VII)

Compound statements (multiple statements on the same line)
are generally discouraged.

Yes:
if foo == ’blah’:

do_blah_thing()
do_one()
do_two()
do_three()

Rather not:
if foo == ’blah’: do_blah_thing()
do_one(); do_two(); do_three()

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Whitespace in Expressions and Statements (VIII)

While sometimes it’s okay to put an if/for/while with a small
body on the same line, never do this for multi-clause
statements. Also avoid folding such long lines!

Definitely not:
if foo == ’blah’: do_blah_thing()
else: do_non_blah_thing()
try: something()
finally: cleanup()
do_one(); do_two(); do_three(long, argument,

list, like, this)
if foo == ’blah’: one(); two(); three()

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Comments

Comments that contradict the code are worse than no
comments. Always make a priority of keeping the comments
up-to-date when the code changes!

Comments should be complete sentences. If a comment is a
phrase or sentence, its first word should be capitalized, unless
it is an identifier that begins with a lower case letter (never
alter the case of identifiers!).

Use inline comments sparingly.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Documentation Strings

Conventions for writing good documentation strings (a.k.a.
”docstrings”) are immortalized in PEP 257 [3].

Write docstrings for all public modules, functions, classes, and
methods.

PEP 257 describes good docstring conventions. Note that
most importantly, the ””” that ends a multiline docstring
should be on a line by itself, and preferably preceded by a
blank line.

For one liner docstrings, it’s okay to keep the closing ””” on
the same line.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Version Bookkeeping

If you have to have Subversion, CVS, or RCS crud in your source
file, do it as follows.

__version__ = "$Revision: 43264 $"
$Source$

These lines should be included after the module’s docstring, before
any other code, separated by a blank line above and below.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Naming Conventions

The naming conventions of Python’s library are a bit of a mess, so
we’ll never get this completely consistent – nevertheless, here are
the currently recommended naming standards. New modules and
packages (including third party frameworks) should be written to
these standards, but where an existing library has a different style,
internal consistency is preferred.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Descriptive: Naming Styles

The following naming styles are commonly distinguished:

b (single lowercase letter)

B (single uppercase letter)

lowercase

lower case with underscores

UPPERCASE

UPPER CASE WITH UNDERSCORES

CapitalizedWords (or CapWords, or CamelCase)

mixedCase (differs from CapitalizedWords by initial lowercase
character!)

Capitalized Words With Underscores

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Python Conventions

In addition, the following special forms using leading or trailing
underscores are recognized :

single leading underscore:
weak ”internal use” indicator.

E.g. ”from M import *” does not import objects whose name
starts with an underscore.

single trailing underscore :
used by convention to avoid conflicts with Python keyword,
e.g.

Tkinter.Toplevel(master, class_=’ClassName’)

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Python Conventions (II)

In addition, the following special forms using leading or trailing
underscores are recognized :

double leading underscore:
when naming a class attribute, invokes name mangling (inside
class FooBar, boo becomes FooBar boo; see below).

double leading and trailing underscore :
”magic” objects or attributes that live in user-controlled
namespaces. E.g. init , import or file .

Never invent such names; only use them as documented!

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Names to Avoid

Never use the characters

l (lowercase letter el),
O (uppercase letter oh)
I (uppercase letter eye)

as single character variable names.
In some fonts, these characters are indistinguishable from the
numerals one and zero. When tempted to use ‘l’, use ‘L’
instead.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Module Names

modulename

Modules should have short, lowercase names, without
underscores.

When an extension module written in C or C++ has an
accompanying Python module that provides a higher level
(e.g. more object oriented) interface, the C/C++ module has
a leading underscore (e.g. socket).

Like modules, Python packages should have short,
all-lowercase names, without underscores.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Class Names

KlassenName

class names use the CapWords convention.

Classes for internal use have a leading underscore in addition.

_KlassenName

For exception classes you should use the suffix ”Error” on your
exception names.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Function Names

funtionsname

Function names should be lowercase, with words separated
by underscores as necessary to improve readability.

Function and method arguments

Always use ’self’ for the first argument to instance methods.

Always use ’cls’ for the first argument to class methods.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Method Names and Instance Variables

methodename

Use the function naming rules: lowercase with words separated by
underscores as necessary to improve readability.

Use one leading underscore only for non-public methods and
instance variables.
To avoid name clashes with subclasses, use two leading
underscores to invoke Python’s name mangling rules.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Name Mangeling

__mangle_me

Python mangles names using two leading underscores with the
class name: if class Foo has an attribute named a, it cannot be
accessed by Foo. a.

An insistent user could still gain access by calling
Foo. Foo a.

Generally, double leading underscores should be used only to
avoid name conflicts with attributes in classes designed to be
subclassed.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Public Attributes

Public attributes should have no leading underscores.

If your public attribute name collides with a reserved keyword,
append a single trailing underscore to your attribute name.
This is preferable to an abbreviation or corrupted spelling.

For simple public data attributes, it is best to expose just the
attribute name, without complicated accessor/mutator
methods.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

Designing for inheritance

If your class is intended to be subclassed, and you have
attributes that you do not want subclasses to use, consider
naming them with double leading underscores and no trailing
underscores.

This invokes Python’s name mangling algorithm, where the
name of the class is mangled into the attribute name. This
helps avoid attribute name collisions should subclasses
inadvertently contain attributes with the same name.

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

The Zen of Python Style Guide for Python Code Whitespace in Expressions and Statements Naming Conventions References

References

1 PEP 7, Style Guide for C Code, van Rossum

2 http://www.python.org/doc/essays/styleguide.html

3 PEP 257, Docstring Conventions, Goodger, van Rossum

4 http://www.wikipedia.com/wiki/CamelCase

5 Barry’s GNU Mailman style guide
http://barry.warsaw.us/software/STYLEGUIDE.txt

6 PEP 20, The Zen of Python

7 PEP 328, Imports: Multi-Line and Absolute/Relative

Prof. Dr. Rüdiger Weis TFH Berlin

Coding Styles for Python

http://www.python.org/doc/essays/styleguide.html
http://www.wikipedia.com/wiki/CamelCase
http://barry.warsaw.us/software/STYLEGUIDE.txt

	The Zen of Python
	Style Guide for Python Code
	Whitespace in Expressions and Statements
	Naming Conventions
	References

