Public Key Kryptographie

Prof. Dr. Rüdiger Weis

TFH Berlin

Sommersemester2008

Algorithmen für Langzahlen

RSA

Das Rabin-Kryptosystem

Diskrete Logarithmen

Grundlagen der PK Kryptographie

Bisher: Ein Schlüssel für Sender **und** Empfänger ('Secret-Key' oder "symmetrische" Krypographie

Nun: Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar "veröffentlicht" werden. Man spricht dann von einem Schlüsselpaar, bestehend aus

- dem 'Public Key' für den Sender und
- dem 'Private Key', exklusiv für den Empfänger. Ohne Private Key kann nicht entschlüsselt werden!

'Public Key' oder "asymmetrische" Kryptographie)

Szenario

Alice sendet eine Nachricht an Bob.

Beide verwenden symmetrische Kryptographie ("secret-key").

- ► **Problem:** Schlüsseltransport
 - Lösung: Alice schickt den Schlüssel an Bob ???
- ▶ **Problem:** *T* Teilnehmer, *T sehr groß*
 - **Lösung:** Speichern von T(T-1)/2 Schlüsseln ???

Public-Key Kryptographie (Beispiele)

- Briefkasten
- "No-Key Protokoll" von Shamir
- ► Asymmetrische Kryptographie ("public-key") Schloß mit zwei Schlüsseln
- ► Einwegfunktionen mit Falltür

PK Kryptographie (Geschichte)

- ca. 1971 Ein Mitarbeiter des britischen Geheimdienstes erfindet *angeblich* die "non-secret" Kryptographie (wurde bis Ende der 90-er Jahre geheimgehalten)
 - 1974 "Merkle Puzzles"
 - **1976** Diffie und Hellman
 - 1977 Rivest, Shamir, Adleman (RSA)
- seit etwa 1990 zunehmende kommerzielle Bedeutung der asymmetrischen Kryptographie

Zur Erinnerung (1)

$$a|b \Leftrightarrow \text{ es gibt } k \text{ mit } k*a = b$$
 $\mathbb{Z}_n = \{0,1,\ldots,n-1\} \ (*)$
 $a \equiv b \mod n \Leftrightarrow n|(a-b)$
 $\mathbb{Z}_n^* = \{i \in \mathbb{Z}_n \mid ggT(i,n) = 1\} \ (*)$

- (*): Kanonische Darstellung
 - ▶ $(\mathbb{Z}_n, +)$ ist eine Gruppe.
 - ▶ $(\mathbb{Z}_n^*, *)$ ist eine Gruppe.

Zur Erinnerung (2)

Euler'sche φ -Funktion: $\varphi(n) = |\mathbb{Z}_n^*|$

Beispiele für \mathbb{Z}_n , \mathbb{Z}_n^* und $\varphi(n)$:

n	\mathbb{Z}_n	\mathbb{Z}_n^*	$\varphi(n)$
2	$\mathbb{Z}_2 = \{0,1\}$	$\mathbb{Z}_2^* = \{1\}$	$\varphi(2)=1$
3	$\mathbb{Z}_3 = \{0, 1, 2\}$	$\mathbb{Z}_3^* = \{1, 2\}$	$\varphi(3)=2$
4	$\mathbb{Z}_4 = \{0, 1, 2, 3\}$	$\mathbb{Z}_4^* = \{1, 3\}$	$\varphi(4)=2$
5	$\mathbb{Z}_5 = \{0, \dots, 4\}$	$\mathbb{Z}_5^* = \{1, 2, 3, 4\}$	$\varphi(5)=4$
	$\mathbb{Z}_6 = \{0, \dots, 5\}$	$\mathbb{Z}_6^* = \{1, 5\}$	$\varphi(6)=2$
7	$\mathbb{Z}_7 = \{0, \dots, 6\}$	$\mathbb{Z}_7^* = \{1, \dots, 6\}$	$\varphi(7)=6$
8	$\mathbb{Z}_8 = \{0,\ldots,7\}$	$\mathbf{Z}_8^* = \{1, 3, 5, 7\}$	$\varphi(8)=4$

Zwei wichtige Eingenschaften von φ

Theorem

- p ist $prim \Leftrightarrow \varphi(p) = p 1$.
- $p \neq q$ sind beide prim

$$\Rightarrow \varphi(p \cdot q) = \varphi(p) \cdot \varphi(q) = (p-1) \cdot (q-1)$$

Satz vom Euler

Theorem (Satz von Euler)

$$\textit{Ist } \textit{ggT}(\textit{a},\textit{n}) = 1, \textit{ so } \textit{gilt}$$

$$a^{\varphi(n)} \equiv 1 \mod n$$
.

(Die Beweise sind einfach und in einführenden Lehrbüchern über Zahlentheorie zu finden.)

Algorithmen für (große) ganze Zahlen

- ► Grundrechenarten (+,-,*,div,mod)
- ▶ Modulares Potenzieren: $a^b \mod m$ ("square—and—multiply")
- ▶ ggT und Inverse in Z_n^{*} (Euklidischer und erweiterter Euklidischer Alg.)
- Chinesischer Restsatz (*)
- ► zusammengesetzte Zahlen faktorisieren (*)
- ▶ Primzahlen testen/finden (*)

Chinesischer Restsatz

Theorem (Chinesischer Restsatz)

Seien m_1, \ldots, m_k : paarweise teilerfremde natürliche Zahlen, mit $m=m_1*\cdots*m_k$ und $a_1,\ldots a_k$: ganze Zahlen. Für $1\leq i\leq k$ gelte $M_i=m/m_i$ und $y_i=M_i^{-1}$ mod m_i . Dann gilt für

$$x \equiv \left(\sum_{i} a_{i} y_{i} M_{i}\right) \mod m:$$

 $x \equiv a_1 \mod m_1$, $x \equiv a_2 \mod m_2$, ..., $und x \equiv a_k \mod m_k$.

Spezialfall des Chinesischen Restsatzes

Theorem

```
Sei m = m_1 * m_2 mit ggT(m_1, m_2) = 1;

sei y_1 = m_2^{-1} \mod m_1,

und sei y_2 = m_1^{-1} \mod m_2.

Für a_1, a_2 \in \mathbb{Z} und x = a_1 y_1 m_2 + a_2 y_2 m_1 gilt:

x \equiv a_1 \mod m_1 und x \equiv a_2 \mod m_2.
```

Wozu brauchen wir den Chinesischen Restsatz?

- ▶ Teilerfremde Zahlen p, q; Produkt n = pq.
- ▶ Gegeben x_p, x_q .
- ▶ Gesucht: $x \in \mathbb{Z}_n$:

$$x \equiv x_p \mod p$$

und

$$x \equiv x_q \mod q$$
.

Man berechne x mit Hilfe des Chinesischen Restsatzes!

Primzahlen finden

Aufgabe: Gegeben Werte a und B mit a < B - 1. Finde eine zufällige Primzahl p mit $p \ge a$ und p < B. (Typisch: $a = 2^n$, $B = 2a = 2^{n+1}$.)

Lösung:

Wiederhole:

- ▶ wähle eine Zufallszahl $z \in \{a, ... B 1\}$,
- ▶ teste, ob z prim ist oder zusammengesetzt,

bis z eine Primzahl ist.

Gib z aus.

Primzahlen finden(2)

Frage: Wie effizient ist dieses Verfahren?

- ► Wie oft wird die Schleife durchlaufen? (Häufigkeit der Primzahlen) (*)
- Kann man effizient testen, ob z eine Primzahl ist?
 Es gibt sehr effiziente probabilistische Algorithmen für Primzahltests (z.B. "Miller-Rabin").
 Vor kurzem fanden indische Informatiker sogar einen deterministischen Primzahltest in Polynomialzeit. Dies ist ein interessantes theoretisches Ergebnis ("PRIMES ∈ P").

Häufigkeit der Primzahlen

<u>Def.</u>: $\pi(x)$ ist die Anzahl der Primzahlen $\leq x$.

Bsp.:
$$\pi(1) = 0$$
, $\pi(3) = 2 = \pi(4) = 2$, ..., $\pi(124) = 30$.

Dem Primzahlsatz zufolge gilt

$$\pi(x) \approx \frac{x}{\ln(x)}.$$

Diese Approximation ist sogar recht genau. Für $x \ge 17$ gilt z.B.

$$\frac{x}{\ln(x)} < \pi(x) < 1,25506 \frac{x}{\ln(x)}.$$

Faktorisierung großer ganzer Zahlen

Das **Faktorisieren** großer ganzer Zahlen gilt als extrem schwierige Aufgabe. Dies ist etwas überraschend, da doch die **Multiplikation** einfach ist – sogar der **Test, ob eine Zahl prim ist**, ist ja vergleichsweise einfach.

Anekdote

Frank Cole widerlegt 1903 eine fast 200 Jahre alte Vermutung von Mersenne:

Obwohl er die Sonntage dreier Jahre benötigte, um die Faktoren von $2^{67}-1$ zu finden, konnte er innerhalb weniger Minuten, ohne weitere Worte darüber zu verlieren, ein großes Publikum davon überzeugen, daß diese Zahl keine Primzahl war, indem er einfach die Arithmetik der Berechnungen von $2^{67}-1$ und 193707721*761838257287 aufschrieb.

RSA

- 1. Zwei zufällig gewählte *große* Primzahlen p und q. Seien n=pq und $e\in \mathbb{Z}_{\varphi(n)}^*$, d.h., $\operatorname{ggT}(e,\varphi(n))=1$. Sei d das multiplikative Inverse von e modulo $\varphi(n)$
- 2. Klartextmenge = Chiffretextmenge = \mathbb{Z}_n
- Schlüssel ist das Tripel (e, d, n).
 Öffentlicher Schlüssel ist das Paar (e, n).
- 4. Verschlüsselungsfunktion E: $E_{(e,n)}(x) = x^e \mod n$
- 5. Entschlüsselungsfunktion D: $D_{(e,d,n)}(y) = y^d \mod n$

Beispiel mit kleinen Zahlen

Beispiel: p = 13, q = 11, n = pq = 143.

$$\overline{\mathsf{Es}\ \mathsf{ist}\ \varphi}(n) = (p-1)(q-1) = 120.$$

Wir wählen e = 7. Insbesondere ist ggT(7,120) = 1.

Für d = 103 gilt dann: $ed = 721 = 6 * 120 + 1 \equiv 1 \mod 120$.

Wenn wir den Klartext 5 Verschlüsseln, erhalten wir

$$E(5) \equiv 5^7 \equiv 78125 \equiv 47 \mod 143.$$

Wenn wir 47 wieder entschlüsseln, gilt:

$$D(47) \equiv 47^{103} \equiv 5 \mod 143.$$

Sicherheit und Korrktheit von RSA

Die <u>Sicherheit</u> des RSA-Systems beruht auf der (unbewiesenen) Vermutung, dass es schwierig ist, n zu faktorisieren (wenn p und q groß genug sind).

Theorem (Korrektheit von RSA (1))

Für
$$x \in \mathbb{Z}_n^*$$
 gilt: $D(E(x)) = x$.

Im Falle des RSA-Systems gilt zusätzlich:

Theorem (Korrektheit von RSA (2))

Für
$$x \in \mathbb{Z}_n^*$$
 gilt: $E(D(x)) = x$.

"Vorstellbare Angriffe" auf RSA

- 1. Faktorisieren von n. (Gilt als extrem schwierig!)
- 2. Berechnen von $\varphi(n)$. (Kann man das, kann man auch Faktorisieren.)
- 3. Ermitteln eines d' mit $x^{ed'} \equiv x^{ed} \equiv x \mod n$. Man beachte, dass d = d' nicht gelten muss. (Kann man das, kann man auch Faktorisieren. Der Beweis ist allerdings nicht gar so einfach. Er beruht darauf, daß $ed' = k\varphi(n) + 1$ ist und man auf $\varphi(n)$ zurückschließen kann.)

"Vorstellbare Angriffe" (2)

- 4. Berechnen der e-ten Wurzel modulo n ("RSA-Wurzel"). (*Vermutlich* ebenso schwierig wie die Faktorisierung.)
- Iteriertes Verschlüsseln des Kryptogramms.
 (Erfordert mit überwältigender Wahrscheinlichkeit astronomisch viele Iterationen.)

Iteriertes Verschlüsseln

Geg. $y \in \mathbb{Z}_m^*$, wende den folgenden Algorithmus an:

- $\triangleright x := y$.
- ▶ Solange $x^e \not\equiv y \mod n$: $x := x^e \mod n$.
- ▶ Gib x aus. (* Nun gilt offenbar $y \equiv x^e \mod n$. *)

Das Verfahren terminiert nach endlicher Zeit. (Warum?)

In der Praxis ist die *endliche Zeit* (also die Anzahl der Iterationen) fast immer astronomisch groß.

Beispiel für iteriertes Verschlüsseln

$$e = 17$$
, $d = 157$, $n = 2773$.

Die Chiffretext y=2209 sei gegeben. Was ist der zugehörige Klartext x mit E(x)=y?

$$E(2209) = 1504$$

 $E(1504) = 2444$
 $E(2444) = 470$
 $E(470) = 2209$

Heureka! Es ist x = 470.

Das Rabin-Kryptosystem

Wie RSA, aber e = 2.

Wenn man Rabin effizient "knacken" kann, dann kann man auch effizient faktorisieren.

Rabin: Eine Variante von RSA

Algorithmische Grundlage:

- Für zusammengesetztes n ist es extrem schwierig, die Gleichung $x^2 = y \mod n$ zu lösen.
- ► Es gibt dagegen einen Algorithmus die Gleichungen

$$x_p^2 \equiv y \mod p \mod x_q^2 \equiv y \mod q$$

löst, wenn p und q prim sind.

Kennt man zwei derartige Lösungen x_p und x_q, kann man den Chinesischen Restsatz benutzen, um die folgende Gleichung zu Lösen:

$$x^2 \equiv y \mod pq$$
.

Rabin (Grundlagen)

Für eine ungerade Primzahl p gilt:

Sei $y \in \mathbb{Z}_p^*$. Die Gleichung $y = x^2 \mod p$ hat entweder gar keine oder genau zwei Lösungen:

Ist $y \equiv x^2 \mod p$, dann ist auch $y \equiv (-x)^2 \mod p$. (Beachte: $-x \equiv p - x \mod p$.)

Rabin (weitere Grundlagen)

Für ungerade Primzahlen $p \neq q$ und das n = pq gilt:

Sei $y \in \mathbb{Z}_n^*$. Die Gleichung $y = x^2 \mod n$ hat entweder keine oder genau vier Lösungen:

- 1. Eine Gleichung $y \equiv x^2 \mod p$ (*) bzw. $y \equiv x^2 \mod q$ (**) hat entweder keine oder genau zwei Lösungen.
- 2. Hat (mindestens) eine der Gleichungen (*) und (**) keine Lösung, dann hat die Gleichung $y=x^2 \mod n$ auch keine Lösung.
- 3. Sonst ergibt jede Kombination von Lösungen mod *p* und mod *q* mit Hilfe des Chinesischen Restsatzes eine Lösung mod *n*.

Rabin (Definition)

- 1. Seien p, q und n wie beim RSA-System definiert. Das Produkt n=pq dient als öffentlicher Schlüssel, die Primfaktoren p und q sind geheim.
- 2. Verschlüsselungsfunktion *E*:

$$E[x] = x^2 \mod n$$
.

3. Entschlüsselungsoperation *D*???

Rabin Entschlüsselung

- ▶ Berechne die beiden Lösungen der Gleichung $y \equiv x^2 \mod p$.
- ▶ Berechne die beiden Lösungen der Gleichung $y \equiv x^2 \mod q$.
- ▶ Berechne daraus die vier Lösungen der Gleichung $y \equiv x^2 \mod n$.
- ► Entscheide, welche der vier Lösungen "richtig" ist. (Dies kann man z.B. erreichen, indem man die Klartexte mit einer "Prüfsumme" verknüpft.)

Rabin Entschlüsselung (2)

Strengenommen ist *D* gar keine <u>Funktion!</u>

Was tun?

Redundanter Klartext x, der von den "falschen Brüdern" mit hoher Wahrscheinlichkeit unterschieden werden kann.

Rabin (Sicherheitsbeweis)

Theorem

Seien n = pq ein Rabin-Modulus und A ein Algorithmus zur Berechnung von Quadratwurzeln modulo n. Der folgende Algorithmus liefert mit mindestens der Wahrscheinlichkeit 0.5 einen Primfaktor von n:

- 1. Wähle zufällig $r \in \mathbb{Z}_n$.
- 2. Berechne $y = r^2 \mod n$.
- 3. Berechne t = ggT(y, n). Wenn t > 1, gib t aus. STOP
- 4. Rufe A auf zur Berechnung von x mit $x^2 \equiv y \mod n$.
- 5. Ist $x \equiv \pm r$, gib 1 aus. Sonst gib ggT(x + r, n) aus. STOP

Elektronischer Münzwurf

Aufgabenstellung für ein kryptographisches Protokoll:

Ein Disput zwischen Alice und Bob soll durch einen Münzwurf entschieden werden

("Kopf" \rightarrow Alice gewinnt, "Zahl" \rightarrow Bob gewinnt).

Kann man so etwas auch über Telefon oder Internet machen?

(Das ist natürlich leicht, wenn beide Beteiligte sich auf die Ehrlichkeit des Gegenübers verlassen . . .)

Münzwurf-Protokoll (1. Teil)

- 1. Alice wählt Primzahlen p und q als Geheimnis und schickt n = pq an Bob. (Intuition: Bob gewinnt \Leftrightarrow Bob findet p oder q.)
- 2. Bob wählt zufällig $x \in \mathbb{Z}_n$ und schickt $y = x^2 \mod n$ an Alice. (Ist ggT(x, n) > 1 hat Bob bereits gewonnen.)
- 3. Alice berechnet r mit (*) $r^2 \equiv y \mod n$. Von den 4 möglichen Lösungen der Gleichung (*) ist r zufällig gewählt. Alice schickt r an Bob.

Münzwurf-Protokoll (2. Teil)

- 4. Bob testet $r^2 \equiv y \mod n$.
- 5. Ist $r \not\equiv \pm x \mod n$, gewinnt Bob: $ggT(r + x, n) \in \{p, q\}$.
- 6. Kann Bob keinen Faktor *p* bzw. *q* angeben, tut Alice dies und gewinnt.

Münzwurf-Protokoll (Sicherheit A)

Kann Alice unentdeckt betrügen?

- ▶ Ist *n* eine Primzahl, kann Alice im letzten Schritt selbst keine Faktoren *p* und *q* angeben.
- ▶ Wählt Alice n als das Produkt mehrerer Primzahlen, steigen Bobs Chancen, einen Teiler $t|n, t \notin \{1, n\}$ zu finden.
- ▶ Ist *r* keine Quadratwurzel mod *n*, wird dies von Bob entdeckt.

Münzwurf-Protokoll (Sicherheit B)

Kann Bob betrügen?

- ▶ Bob kann versuchen, *n* zu faktorisieren.
- ▶ Schafft er dies nicht, dann gilt, egal wie *y* gewählt ist: Bob kennt nur (höchstens) zwei Quadratwurzeln von *y* und hat keinen Einfluß darauf, welche Quadratwurzel *r* Alice ihm zurückgibt.

Diskrete Logarithmen

- ▶ Primzahl p, Zahlen $x, g \in \{1, 2, ..., p-2\}$
- ▶ Zahl $B = g^x \mod p$
- ▶ Das Problem, zu B, g, p einen Wert x zu finden mit $B = g^x \mod p$ bezeichnet man als "Diskreten Logarithmus von B zur Basis g".

Dieses Problem gilt als extrem schwierig.

Diffie-Hellman Schlüsselaustausch

Primzahl p und Generator g festgelegt.

Alice: wählt a als geheimen Schlüssel öffentlicher Schlüssel: $A = g^a \mod p$.

<u>Bob:</u> wählt b als geheimen Schlüssel öffentlicher Schlüssel: $B = g^b \mod p$.

Geheimer Sitzungsschlüssel: $K = g^{ab} \mod p$.

Alice und Bob können den Sitzungsschlüssel effizient berechnen. (Wie?)

Das "Diffie-Hellman Problem"

Gegeben A **und** B, **berechne** K.

Dieses Problem ist gilt als als extrem schwierig.

Wenn man das DL-Problem effizient lösen kann, kann man das DH-Problem auch effizient lösen. (Warum?)

Ob die Umkehrung auch gilt, ist leider unklar.

ElGamal-Verschlüsselung

Weiterentwicklung des D.-H.-Schlüsselaustausches:

```
Primzahl p und Generator g festgelegt.
```

Alice: wählt a als geheimen Schlüssel öffentlicher Schlüssel: $A = g^a \mod p$.

Bob: will Nachricht $m \in \mathbb{Z}_p^*$ verschlüsseln wählt zufällig $r \in \mathbb{Z}_p^*$ Berechnet $B = g^r \mod p$ und $C = A^r m \mod p$ Chiffretext: (B, C).

Alice: berechnet x = p - 1 - aNachricht: $m' = B^x * C \mod p$.

Es gilt m' = m. (Nachrechnen!)

Andere Gruppen

Historisch wurden D-H Schlüsselaustausch und ElGamal Verschlüsselung über der Gruppe $(*, \mathbb{Z}_p^*)$ definiert (oder Untergruppen). Man kann aber auch andere endliche Gruppen (\circ, G) nutzen, wenn gilt:

- 1. Die Gruppenoperation $\circ: G \times G \rightarrow G$ ist effizient berechenbar.
- 2. Das Diffie-Hellman Problem in der Gruppe ist hart.

Als besonders vielversprehend gelten additive Punktgruppen von eliptischen Kurven über endlichen Körpern. Diese werden Rahmen dieser Vorlesung aber nicht weiter betrachtet.

Danksagungen

Danksagungen

- ► Nach einer Vorlesung von Stefan Lucks
- ► Erstellt mit Freier Software